Math, asked by moonjennifer27, 11 days ago

If u can do these 3 correctly 33,34,35 then I’ll mark u as Brainliest

Attachments:

Answers

Answered by mathdude500
22

Question - 33

Evaluate the following :

 \sf \: \dfrac{ {a}^{2} -  {(b - c)}^{2} }{ {(a + b)}^{2}  -  {c}^{2} }  + \dfrac{ {b}^{2} -  {(c - a)}^{2} }{ {(b + c)}^{2}  -  {a}^{2} }  + \dfrac{ {c}^{2}  -  {(a + b)}^{2} }{ {(c + a)}^{2}  -  {b}^{2} }

Consider,

\sf \: \dfrac{ {a}^{2} -  {(b - c)}^{2} }{ {(a + b)}^{2}  -  {c}^{2} }  + \dfrac{ {b}^{2} -  {(c - a)}^{2} }{ {(b + c)}^{2}  -  {a}^{2} }  + \dfrac{ {c}^{2}  -  {(a + b)}^{2} }{ {(c + a)}^{2}  -  {b}^{2} }

We know

\boxed{ \tt{ \:  {x}^{2} -  {y}^{2} = (x + y)(x - y) \: }}

So, using this, we get

\sf=\dfrac{(a + b - c)(a - b  + c)}{(a + b - c)(a + b + c)} +  \\   \:  \:\sf \: \dfrac{(b + c - a)(b - c + a)}{(b + c - a)(b + c + a)}  +   \\  \sf \: \dfrac{(c + a - b)(c - a + b)}{(c + a - b)(c + a + b)}

\sf \:  =  \: \dfrac{a - b + c}{a + b + c}  + \dfrac{b - c + a}{a + b + c}  + \dfrac{c - a + b}{a + b + c}

\sf \:  =  \: \dfrac{\cancel{a} - \cancel{b} + c + \cancel{b} - \cancel{c} + a + \cancel{c} - \cancel{a} + b}{a + b + c}

\sf \:  =  \: \dfrac{a + b + c}{a + b + c}

\sf \:  =  \: 1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question- 34

Evaluate the following :-

 \sf \: \dfrac{ {a}^{2}  -  {b}^{2} }{ {a}^{3}  -  {b}^{3} }  \times \dfrac{ {a}^{3}  +  {a}^{2}b +  {ab}^{2} }{ {a}^{2}  + 2ab +  {b}^{2} }  \times (a + b)

Consider,

\rm :\longmapsto\: \sf \: \dfrac{ {a}^{2}  -  {b}^{2} }{ {a}^{3}  -  {b}^{3} }  \times \dfrac{ {a}^{3}  +  {a}^{2}b +  {ab}^{2} }{ {a}^{2}  + 2ab +  {b}^{2} }  \times (a + b)

We know that,

\boxed{ \tt{ \:  {x}^{2} -  {y}^{2} = (x + y)(x - y) \: }}

\boxed{ \tt{ \:  {x}^{3} -  {y}^{3} = (x - y)( {x}^{2}  + xy +  {y}^{2})  \: }}

\boxed{ \tt{ \:  {x}^{2} + 2xy +  {y}^{2}  =  {(x + y)}^{2} \: }}

So, using these Identities, we get

\sf= \dfrac{(a + b)(a - b)}{(a - b)( {a}^{2}  + ab +  {b}^{2})}  \times \dfrac{a( {a}^{2} + ab +  {b}^{2})}{ {(a + b)}^{2} }  \times (a + b)

\rm \:  =  \: a

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question :- 35

Evaluate the following :-

 \sf \: \dfrac{ {b}^{2} + bc +  {c}^{2} }{(a - b)(c - a)}  + \dfrac{ {c}^{2}  + ca +  {a}^{2} }{(b - c)(a - b)}  + \dfrac{ {a}^{2} + ab +  {b}^{2} }{(c - a)(b - c)}

Consider

 \sf \: \dfrac{ {b}^{2} + bc +  {c}^{2} }{(a - b)(c - a)}  + \dfrac{ {c}^{2}  + ca +  {a}^{2} }{(b - c)(a - b)}  + \dfrac{ {a}^{2} + ab +  {b}^{2} }{(c - a)(b - c)}

can be rewritten as

 \:  \sf  = \: \dfrac{(b - c)({b}^{2} + bc +  {c}^{2} )}{(a - b)(c - a)(b - c)}  + \\   \:  \:  \:  \:  \:  \: \sf \dfrac{(c - a)({c}^{2}  + ca +  {a}^{2} )}{(b - c)(a - b)(c - a)}  +  \\   \:  \:  \:  \: \sf \: \dfrac{(a - b)({a}^{2} + ab +  {b}^{2} )}{(c - a)(b - c)(a - b)}

 \:  \sf  = \: \dfrac{ {b}^{3} -  {c}^{3}  }{(a - b)(c - a)(b - c)}  + \\   \:  \:  \:  \:  \:  \: \sf \dfrac{ {c}^{3}  -  {a}^{3} }{(b - c)(a - b)(c - a)}  +  \\   \:  \:  \:  \: \sf \: \dfrac{ {a}^{3}  -  {b}^{3} }{(c - a)(b - c)(a - b)}

\sf \:  =  \: \dfrac{ {b}^{3}  -  {c}^{3}  +  {c}^{3}  -  {a}^{3}  +  {a}^{3}  -  {b}^{3} }{(a - b)(b - c)(c - a)}

\sf \:  =  \: \dfrac{ 0 }{(a - b)(b - c)(c - a)}

\sf \:  =  \: 0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions