Math, asked by Pithamberyadav, 9 months ago

If u=cosxcoshy, then the analytic function f(z) =u+iv is​

Answers

Answered by jaydevkumar3434
5

f(z)=u+IV is called penicillium

Answered by pulakmath007
39

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

u = cosx \: coshy

TO DETERMINE

The harmonic conjugate v of u and the analytic function f(z) = u + iv

CALCULATION

u = cosx \: coshy

Now

\displaystyle \: \frac{\partial u}{\partial x} =  - sinx \: coshy

\displaystyle \: \frac{\partial u}{\partial y} =   cosx \: sinh \: y

\displaystyle \: \frac{\partial^2 u}{\partial x^2} =  - cosx \: cosh \: y

\displaystyle \: \frac{\partial^2 u}{\partial y^2} = cosx \: cosh \: y

So

\displaystyle \: \frac{\partial^2 u}{\partial x^2} +  \frac{\partial^2 u}{\partial y^2} = 0

So u satisfies Laplace Equation

Hence u is a harmonic function

Let v be the harmonic conjugate of u

Then v satisfies Cauchy - Riemann partial differential equations :

\displaystyle \: \frac{\partial u}{\partial x}  =  \frac{\partial v}{\partial y}   \:  \:  \: and \:  \: \frac{\partial u}{\partial y}  = -   \frac{\partial v}{\partial x}  \:  \: .....(1)

Now

dv = \displaystyle \: \frac{\partial v}{\partial x} dx  +  \frac{\partial v}{\partial y} dy

 \implies \: dv = \displaystyle \:  - \frac{\partial u}{\partial y}  \: dx +  \frac{\partial u}{\partial x}  \: dy

 \implies \: dv = \displaystyle \:  - cosx \: sinhy \: \:  dx  - sinx \: cosh \: y  \:  \:  \: dy

On Integration we get

v =  - sinx \: cosh \: y \:  + c

Where c is constant

Which is the harmonic conjugate of u

Now

f(z) = u \:  + iv

 \implies \: f(z) =  \displaystyle \:   cosx \: cosh \: y \: \:   + i(  - sinx \: cosh \: y  \:  + c)

 \implies \: f(z) =  \displaystyle \:   cosx \: cosh \: y \: \:    - i \: sinx \: cosh \: y  \:  + ic

 \implies \: f(z) =  \displaystyle \:   cos(x + iy) +  ic

 \implies \: f(z) =  \displaystyle \:   cosz +  ic

Which is the required analytic function

RESULT

1. The harmonic conjugate v of u is

- sinx \: cosh \: y \:  + c

2.The analytic function

f(z) =  \displaystyle \:   cosz +  ic

Similar questions