Math, asked by shails5218, 3 months ago

If u=f(x-y,y-z,z-x) prove that du/dx+du/dy+du/dz=0

Answers

Answered by Nirmit2867
2
292)39,)/9:):92!:.98/&2&!::9-82₹3 sosneesajshen siene828: kejrheh
Answered by PravinRatta
14

Given,

u=f(x-y,y-z,z-x)

To Find,

prove that \frac{du}{dx} +\frac{du}{dy}+\frac{du}{dz} =0

Solution,

suppose X= y-z, Y= z-x, Z= x-y, then u= f(X,Y,Z)

therefore u is composite function x,y,z respectively.

we have, X= y-z, Y= z-x, Z= x-y

partially differentiate w.r.t x,y,z respectively, we get

\frac{dX}{dx}=0, \frac{dX}{dy}= 1, \frac{dX}{dz}=-1

and \frac{dY}{dx}=-1, \frac{dY}{dy}= 0, \frac{dY}{dz}=1

and \frac{dZ}{dx}=1, \frac{dZ}{dy}= -1, \frac{dZ}{dz}=0

now, \frac{du}{dx} =\frac{du}{dX} .\frac{dX}{dx} +\frac{du}{dY} .\frac{dY}{dx} +\frac{du}{dZ} .\frac{dZ}{dx}

             = \frac{du}{dX} .(0) +\frac{du}{dY} .(-1) +\frac{du}{dZ} .(1) =- \frac{du}{dY} +\frac{du}{dZ}              (1)

        \frac{du}{dy} =\frac{du}{dX} .\frac{dX}{dy} +\frac{du}{dY} .\frac{dY}{dy} +\frac{du}{dZ} .\frac{dZ}{dy}                                    

             =  \frac{du}{dX} .(1) +\frac{du}{dY} .(0) +\frac{du}{dZ} .(-1) =\frac{du}{dX} -\frac{du}{dZ}                (2)

        \frac{du}{dZ} =\frac{du}{dX} .\frac{dX}{dz} +\frac{du}{dY} .\frac{dY}{dz} +\frac{du}{dZ} .\frac{dZ}{dz}

             = \frac{du}{dX} .(-1) +\frac{du}{dY} .(1) +\frac{du}{dZ} .(0) =-\frac{du}{dX} +\frac{du}{dY}               (3)

adding (1),(2),(3) we get,

\frac{du}{dx} +\frac{du}{dy}+\frac{du}{dz} = - \frac{du}{dY} +\frac{du}{dZ}+\frac{du}{dX} -\frac{du}{dZ}-\frac{du}{dX} +\frac{du}{dY} =0

Hence \frac{du}{dx} +\frac{du}{dy}+\frac{du}{dz} = 0.

Similar questions