Math, asked by balunkeswarsethy4896, 17 hours ago

If u = log v and v(x, y) is a homogenous function of degree n, then xux + yuy =
A) n(x+y) B) n C) n 2 D) xy​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{u=log\,v\;\;and\;v\;is\;a\;homogeneous\;function\;of\;degree\;n}

\underline{\textbf{To find:}}

\mathsf{x\,u_x+y\,u_y}

\underline{\textbf{Solution:}}

\underline{\textbf{Euler's theorem:}}

\textsf{If f is a homogeneous function of degree n, then}

\boxed{\mathsf{x\,\dfrac{\partial\,f}{\partial\,x}+y\,\dfrac{\partial\,f}{\partial\,y}=n\,f}}

\mathsf{Consider,}

\mathsf{u=log\,v}

\implies\mathsf{v=e^u}

\textsf{By Euler's theore,}

\mathsf{x\,\dfrac{\partial\,v}{\partial\,x}+y\,\dfrac{\partial\,v}{\partial\,y}=n\,v}

\mathsf{x\,\dfrac{\partial(e^u)}{\partial\,x}+y\,\dfrac{\partial(e^u)}{\partial\,y}=n(e^u)}

\mathsf{x\,e^u\,\dfrac{\partial\,u}{\partial\,x}+y\,e^u\,\dfrac{\partial\,u}{\partial\,y}=n(e^u)}

\textsf{Divide bothsides by}\;\mathsf{e^u}

\mathsf{x\,\dfrac{\partial\,u}{\partial\,x}+y\,\dfrac{\partial\,u}{\partial\,y}=n}

\implies\boxed{\mathsf{x\,u_x+y\,u_y=n}}

\underline{\textbf{Answer:}}

\mathsf{Option\;(c)\;is\;correct}

\underline{\textbf{Find more:}}

Find the second order partial derivatives of F(x.y) = (3x + 2y).4​

https://brainly.in/question/31686292  

If u=x³y³/x³+y³,prove that x du/dx + y du/dy=3u​

https://brainly.in/question/35340172  

Similar questions