Math, asked by sahilgramteke2000, 5 months ago

If u=log [(x^2+y^2)/(x+y)] then find x ∂u/∂x + y ∂u/∂y .​

Answers

Answered by jyothir616
0

Answer:

u=log(x

3

+y

3

+z

3

−3xyz) and(

∂x

+

∂y

+

∂z

)

2

u=

(x+y+z)

2

−k

then k=?

ANSWER

dx

du

+

dy

du

+

dz

du

=

x

3

+y

3

+z

3

−3xyz

3x

2

−3yz+3y

2

−3xz+3z

2

−3xy

=

x

3

+y

3

+z

3

−3xyz

3(x

2

+y

2

+z

2

)−3(xy+yz+xz)

dx

du

+

dy

du

+

dz

du

=

(x+y+z)

3

(

dx

d

+

dy

d

+

dz

d

)(

dx

du

+

dy

du

+

dz

du

)=(

dx

d

+

dy

d

+

dz

d

)

2

u

(x+y+z)

2

−3

+

(x+y+z)

2

−3

+

(x+y+z)

2

−3

=(

dx

d

+

dy

d

+

dz

d

)

2

u

(x+y+z)

2

−9

=(

dx

d

+

dy

d

+

dz

d

)

2

u

k=9

Similar questions