Math, asked by anmk, 7 months ago

if u= log (x^3+y^3+z^3-3xyz) then show that (d/dx+d/dy+d/dz)^​

Answers

Answered by sonukumar9608978964
0

Step-by-step explanation:

answr

search

What would you like to ask?

MATHS

u=log(x

3

+y

3

+z

3

−3xyz)⇒(x+y+z)(u

x

+u

y

+u

z

)=

Share

Study later

VIDEO EXPLANATION

ANSWER

u

x

=

dx

du

=

x

3

+y

3

+z

3

−3xyz

3x

2

−3yz

..........(1)

u

y

=

dy

du

=

x

3

+y

3

+z

3

−3xyz

3y

2

−3xz

..........(2)

u

z

=

dz

du

=

x

3

+y

3

+z

3

−3xyz

3z

2

−3xy

..........(3)

Add all the three equations

dx

du

+

dy

du

+

dz

du

=

x

3

+y

3

+z

3

−3xyz

3(x

2

+y

2

+z

2

−xy−yz−zx)

=

x+y+z

3

∴(x+y+z)(u

x

+u

y

+u

z

)=3

Note: z

3

+b

3

+c

3

−3abc=(a+b+c)(a

2

+b

2

+c

2

−ab−bc−ca)

⇒x

3

+y

3

+z

3

−3xyz=(x+y+z)(x

2

+y

2

+z

2

−xy−xz−yz)

so, (x+y+z)(u

x

+u

y

+u

z

)=3

please mark me brainliest and follow me guys please

Similar questions