Math, asked by mohanbegari0, 20 days ago

If u= tan^-1(y²/x) then prove that x² d²u/dx²+2xy d²u/dxdy+y² d²u/dy²=-sin²u•sin2u

Answers

Answered by at643817
0

Answer:

Correct option is A)

Given : u=tan

−1

(

x−y

x

3

+y

3

)

tanu=

x−y

x

3

+y

3

(x−y)tanu=x

3

+y

3

→(1)

Differentiate w.r.t

x

partially

+tanu+(x−y)sec

2

u

∂x

∂u

=3x

2

→(2)

Differntiate w.r.t

y

partially

−tanu−(x−y)sec

2

u

∂x

∂u

=3x

2

→(3)

Further x(2) + y(3)

(x−y)tan(u)+sec

2

u(x−y){x

∂x

∂u

+y

∂y

∂u

}=3(x

3

+y

3

)

(x−y)[tan(u)+sec

2

u{x

∂x

∂u

+y

∂y

∂u

}]=3(x

3

+y

3

)

tan(u)+sec

2

u{x

∂x

∂u

+y

∂y

∂u

}=

(x−y)

3(x

3

+y

3

)

tan(u)+sec

2

u{x

∂x

∂u

+y

∂y

∂u

}=3tanu

⇒x

∂x

∂u

+y

∂y

∂u

=sin(2u)

Differentiating w.r.t x and y gives

∂x

∂u

+x

∂x

2

2

u

+x

∂x∂y

2

u

=2cos(2u)

∂x

∂u

→(4)

x

∂x∂y

2

u

+y

∂y

2

2

u

+

∂y

∂u

=2cos(2u)

∂y

∂u

Further x(4) + y(5) gives

x

2

∂x

2

2

u

+2xy

∂x∂y

2

u

+y

2

∂y

2

2

u

={2cos(2u)−1}{x

∂x

∂u

+y

∂y

∂u

}

={2cos(2u)−1}sin(2u)

Similar questions