Math, asked by vanshitadongre432, 3 months ago

if u= tan inverse (xy/square root 1+x²+y²) then show that del²u/del x del y = 1/(1+x²+y²) to the power 3/2​

Answers

Answered by mudavathanjali825
5

Answer:

Given, u=tan

−1

(

x+y

x

2

+y

2

)

⇒tanu=

(x+y)

x

2

+y

2

On differentiating both the sides w.r.t. x and y respectively, we get

sec

2

u

dx

du

=

(x+y)

2

2x(x+y)−(x

2

+y

2

)

....(1)

and sec

2

u

dy

du

=

(x+y)

2

2y(x+y)−(x

2

+y

2

)

....(2)

Multiplying x with equation (1) and y to equation (2).

Therefore, xsec

2

u

dx

du

=

(x+y)

2

x

3

+2x

2

y−xy

2

....(3)

and ysec

2

u

dy

du

=

(x+y)

2

y

3

+2xy

2

−x

2

y

....(4)

Adding equations (3) and (4), we get

sec

2

u(x

dx

du

+y

dy

du

)=

(x+y)

2

x

3

+2x

2

y−xy

2

+y

3

+2xy

2

−x

2

y

=

(x+y)

2

x

3

+x

2

y+y

3

+xy

2

=

(x+y)

2

(x+y)(x

2

+y

2

)

=

x+y

x

2

+y

2

=tanu

Thus x

dx

du

+y

dy

du

=sinucosu

=

2

1

sin2u

Answered by Anonymous
4

Given:

  • u = tan^{-1} (xy/\sqrt{1+x^{2} +y^{2} } )

To Find:

  • Show that  \frac{del^{2} (u)}{del(x)del(y)} = \frac{1}{(1+x^{2} +y^{2})^3/2 }

Solution:

  • first, differentiate \frac{delu }{dely} with respect to y.
  • we are partially differentiating u with respect to y and we get the following equation.
  • \frac{delu }{dely} = \frac{1}{1+\frac{x^{2}+ y^{2} }{1+x^{2} +y^{2} } }  *x*\frac{(\sqrt{1+x^{2} +y^{2} }  - y*\frac{1}{2}*(1+x^{2} +y^{2})^{-1/2} *2y  }{1+x^{2} +y^{2} }
  • On further simplification we get,
  • \frac{delu }{dely} = \frac{x}{1+x^{2} +y^{2}+x^{2} +y^{2}  } *(\frac{1+x^{2} +y^{2} - y^{2} }{\sqrt{1+x^{2} +y^{2} } } )  
  • Taking LCM and simplifying we get,
  • \frac{delu }{dely} = \frac{x}{(1+y^{2}) *\sqrt{1+x^{2} +y^{2} } }
  • In the next step, we are differentiating the above obtained equation as we need to prove.
  • \frac{del^{2}u }{delxdely} = \frac{del(\frac{x}{(1+y^{2}) *\sqrt{1+x^{2} +y^{2}) }  } }{delx}
  • In the above step, we are double partially differentiating with respect to x.
  • \frac{del^{2}u }{delxdely} = (\frac{1}{1+y^{2} })*(\frac{(1+x^{2} +y^{2}) -x^{2} }{(1+x^{2} +y^{2} )^{3/2} }  )
  • \frac{del^{2}u }{delxdely} = \frac{1}{(1+x^{2}+y^{2})^{3/2}   }

Hence Proved.

\frac{del^{2}u }{delxdely} = \frac{1}{(1+x^{2}+y^{2})^{3/2}   }

Similar questions