Math, asked by Tejasaditya678, 2 months ago

if u=x^4+y^4 then find ∂u/∂x

Answers

Answered by shrisehgalgracy
1

Step-by-step explanation:

Correct option is

A

2

The given information is: u=log(

x

2

+y

2

x

4

+y

4

)

Taking partial differentiation w.r.t. to x and y one at a time we get,

∂x

∂u

=

x

4

+y

4

x

2

+y

2

.

(x

2

+y

2

)

2

4x

3

(x

2

+y

2

)−2x(x

4

+y

4

)

∂x

∂u

=

(x

4

+y

4

)(x

2

+y

2

)

4x

5

+4x

3

y

2

−2x

5

−2xy

4

∂y

∂u

=

x

4

+y

4

x

2

+y

2

.

(x

2

+y

2

)

2

4y

3

(x

2

+y

2

)−2y(x

4

+y

4

)

∂y

∂u

=

(x

4

+y

4

)(x

2

+y

2

)

4y

5

+4x

2

y

3

−2y

5

−2x

4

y

Now we make calculation as follows,

⇒x

∂x

∂u

=

(x

4

+y

4

)(x

2

+y

2

)

4x

6

+4x

4

y

2

−2x

6

−2x

2

y

4

⇒y

∂y

∂u

=

(x

4

+y

4

)(x

2

+y

2

)

4y

6

+4x

2

y

4

−2y

6

−2x

4

y

2

⇒x

∂x

∂u

+y

∂y

∂u

=

(x

4

+y

4

)(x

2

+y

2

)

4x

6

+4x

4

y

2

−2x

6

−2x

2

y

4

+

(x

4

+y

4

)(x

2

+y

2

)

4y

6

+4x

2

y

4

−2y

6

−2x

4

y

2

⇒x

∂x

∂u

+y

∂y

∂u

=

(x

4

+y

4

)(x

2

+y

2

)

2x

6

+2x

4

y

2

+2y

6

+2x

2

y

4

⇒x

∂x

∂u

+y

∂y

∂u

=

(x

2

+y

2

)(x

4

+y

4

)

2(x

2

+y

2

)(x

4

+y

4

)

⇒x

∂x

∂u

+y

∂y

∂u

=2

Similar questions