Math, asked by hemalatha5422, 1 year ago

If u=x^y then the first order partial derivative of u with respect to y is

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\mathsf{u=x^y}

\underline{\textbf{To find:}}

\textsf{First order partial derivative of u with}

\textsf{respect to y}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{u=x^y}

\textsf{Take logarithm on bothsides, we get}

\mathsf{log\,u=log\,x^y}

\mathsf{log\,u=y\,log\,x} \;\;\;(\because\textsf{Using power rule})

\textsf{Differentiate partially with respect to 'y'}

\mathsf{\dfrac{1}{u}\,\dfrac{{\partial}u}{{\partial}y}=log\,x}

\mathsf{\dfrac{{\partial}u}{{\partial}y}=u\;log\,x}

\implies\boxed{\mathsf{\dfrac{{\partial}u}{{\partial}y}=x^y\;log\,x}}

Similar questions