Math, asked by rahulmani6382, 20 days ago

if u =x+y/x-y, find del u /delx, del u/del y in topper answer​

Answers

Answered by mathdude500
1

Question :-

\rm \:If \:  u \:  =  \: \dfrac{x + y}{x - y}, \: find \: \dfrac{\partial u}{\partial x} \: and \: \dfrac{\partial u}{\partial y}  \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \: u \:  =  \: \dfrac{x + y}{x - y}  \\

On differentiating partially both sides w. r. t. x, we get

\rm \: \dfrac{\partial }{\partial x} u \:  =  \: \dfrac{\partial }{\partial x} \: \dfrac{x + y}{x - y}  \\

We know,

\boxed{ \rm{ \:\dfrac{d}{dx} \frac{u}{v}   \:  =  \:  \frac{v\dfrac{d}{dx}u \: -   \: u\dfrac{d}{dx}v}{ {v}^{2} }  \:  \: }} \\

So, using this, we get

\rm \: \dfrac{\partial u}{\partial x} = \dfrac{(x - y)\dfrac{\partial }{\partial x} (x + y) - (x + y)\dfrac{\partial }{\partial x}(x - y)}{ {(x - y)}^{2} }  \\

\rm \: \dfrac{\partial u}{\partial x} = \dfrac{(x - y)(1 + 0) - (x + y)(1 - 0)}{ {(x - y)}^{2} }  \\

\rm \: \dfrac{\partial u}{\partial x} = \dfrac{(x - y) - (x + y)}{ {(x - y)}^{2} }  \\

\rm \: \dfrac{\partial u}{\partial x} = \dfrac{x - y - x  -  y}{ {(x - y)}^{2} }  \\

\rm \: \dfrac{\partial u}{\partial x} = \dfrac{ - 2y}{ {(x - y)}^{2} }  \\

Hence,

\rm\implies \: \boxed{ \rm{ \:\: \rm \: \dfrac{\partial u}{\partial x} = \dfrac{ - 2y}{ {(x - y)}^{2} } \:  \: }}  \\

Again Consider

\rm \: u \:  =  \: \dfrac{x + y}{x - y}  \\

On differentiating partially both sides w. r. t. y, we get

\rm \: \dfrac{\partial }{\partial y} u \:  =  \: \dfrac{\partial }{\partial y} \: \dfrac{x + y}{x - y}  \\

\rm \: \dfrac{\partial u}{\partial y} = \dfrac{(x - y)\dfrac{\partial }{\partial y} (x + y) - (x + y)\dfrac{\partial }{\partial y}(x - y)}{ {(x - y)}^{2} }  \\

\rm \: \dfrac{\partial u}{\partial y} = \dfrac{(x - y)(0 + 1) - (x + y)(0 - 1)}{ {(x - y)}^{2} }  \\

\rm \: \dfrac{\partial u}{\partial y} = \dfrac{(x - y) +  (x + y)}{ {(x - y)}^{2} }  \\

\rm \: \dfrac{\partial u}{\partial y} = \dfrac{2x}{ {(x - y)}^{2} }  \\

Hence,

\rm\implies \:\boxed{ \rm{ \: \: \rm \: \dfrac{\partial u}{\partial y} = \dfrac{2x}{ {(x - y)}^{2} }   \:  \: }}\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions