Math, asked by dangetisiva1586, 3 months ago

if u=x+y+z ,y+z=uv,z=uvw,s.t d(x,y,z)/d(u,v,w)=u*u*v

Answers

Answered by llXxDramaticKingxXll
6

Step-by-step explanation:

I hope it will be help full for

Attachments:
Answered by shaista16lm
1

Answer:    

\frac{\partial (x,y,z) }{\partial (u,v,v)} = u^{2}v or d(x,y,z)/d(u,v,w)=u*u*v

Step-by-step explanation:

Given Equations are, u= x+ y + z --(1)

                                   y + z = u × v, --(2)

                                   z= u × v × w --(3)

The Question here indicates the use of Jacobian concept:

                                 \frac{\partial (x,y,z)}{\partial (u,v,w)} = \left[\begin{array}{ccc}\frac{\partial x}{\partial u} &\frac{\partial x}{\partial v} &\frac{\partial x}{\partial w} \\\frac{\partial y}{\partial u} &\frac{\partial y}{\partial v} &\frac{\partial y}{\partial w} \\\frac{\partial z}{\partial u} &\frac{\partial z}{\partial v} &\frac{\partial z}{\partial w} \end{array}\right]

In the given variables, the variables are depended as denoted :

                                  (x,y,z) --> (u,v,w)

By solving the given equations we can write x in terms of u ,v, w .

(1) - (2) ⇒ x= u- u × v

From (2) and (3) we write, uv= y+uvw ⇒ y= u× v-(u ×v× w)

and z= u× v× w

Let us substitute the derived x, y ,z values in the Jacobian formula :

\frac{\partial (x,y,z)}{\partial (u,v,w)} = \left[\begin{array}{ccc}\frac{\partial x}{\partial u} &\frac{\partial x}{\partial v} &\frac{\partial x}{\partial w} \\\frac{\partial y}{\partial u} &\frac{\partial y}{\partial v} &\frac{\partial y}{\partial w} \\\frac{\partial z}{\partial u} &\frac{\partial z}{\partial v} &\frac{\partial z}{\partial w} \end{array}\right]

\frac{\partial x}{\partial u} = \frac{\partial (u- u \times v)}{\partial u} = 1-v

\frac{\partial x}{\partial v} = \frac{\partial (u- u\times v)}{\partial v}= -u

\frac{\partial x}{\partial w} = \frac{\partial u-u \times v}{\partial w}=0

\frac{\partial y}{\partial u} = \frac{\partial (u\times v)-(u \times v \times w)}{\partial u} = v- v× w

\frac{\partial y}{\partial v} =\frac{\partial (u\times v)-(u \times v \times w)}{\partial v} =u-  u× w

\frac{\partial y}{\partial w} = \frac{\partial (u\times v)-(u \times v \times w)}{\partial w} = - u× v

\frac{\partial z}{\partial u} =\frac{\partial u \times v \times w}{\partial u} = v× w

\frac{\partial z}{\partial v} = \frac{\partial u \times v \times w}{\partial v} = u× w

\frac{\partial z}{\partial w} = \frac{\partial u \times v \times w}{\partial w} = u× v

Now substitute all the values in the Jacobian matrix;

   =       \left[\begin{array}{ccc}(1-v)&-u&0\\v- v\times w &u-  u\times w&- u\times v\\v\times w &u\times w & u\times v\end{array}\right]

   = (1-v) [ (u-uw)(uv) - (-uv) (uw)] -(-u) [ v-vw(uw) - (u-uw)(vw)]

  =  (1-v) [u^{2}v - u^{2}v w + u^{2}vw] +u[vuw -w^{2}uv] -(uvw +w^{2}vu)]

=u^{2}v -u^{2}v w+u^{2}vw -u^{2}v^{2}  +u^{2}v^{2}w -u^{2}v^{2}w +u^{2}v}w- u^{2}w^{2}v- u^{2} vw + w^{2}vu^{2}

  = u^{2}v

Therefore,    \frac{\partial (x,y,z)}{\partial (u,v,w)}= u^{2}v

Hence proved.

             

Similar questions