Math, asked by jasmithareddyk, 3 months ago

if u=x²-2y,v=x+y+,w=x-2y+3z, find d(u,v,w)/d(x,y,z)​

Answers

Answered by bhuvna789456
2

\frac{d(u,v,w)}{d(x,y,z)} = 14x + 4

Step-by-step explanation:

Given,

u=x^{2} -2y \\v=x+y+z\\w=x-2y+3z

To find :

\frac{d(u,v,w)}{d(x,y,z)}

The above expression is called Jacobian of u,v,w with respect to x,y,z.

It can also be expressed as  J\frac{(u,v,w)}{(x,y,z)}

It can be calculated by the determinant ,

\left[\begin{array}{ccc}\frac{du}{dx} &\frac{du}{dy} &\frac{du}{dz} \\\frac{dv}{dx}&\frac{dv}{dy}&\frac{dv}{dz}\\\frac{dw}{dx}&\frac{dw}{dy}&\frac{dw}{dz}\end{array}\right]

Finding the values of determinant elements we get ,

(i) \frac{du}{dx} = \frac{d}{dx}(x^{2} -2y) \\\\\frac{du}{dx}=  2x

(ii) \frac{du}{dy} = \frac{d}{dy}(x^{2} -2y) \\\\\frac{du}{dy}=  -2\\\\(iii) \frac{du}{dz} = \frac{d}{dz}(x^{2} -2y) \\\\\frac{du}{dz}= 0\\\\\\(iv) \frac{dv}{dx} = \frac{d}{dx}(x+y+z) \\\\\frac{dv}{dx}=  1\\\\(v) \frac{dv}{dy} = \frac{d}{dy}(x+y+z) \\\\\frac{dv}{dy}=  1\\\\(vi) \frac{dv}{dz} = \frac{d}{dz}(x+y+z) \\\\\frac{dv}{dz}=  1\\\\(vii) \frac{dw}{dx} = \frac{d}{dx}(x-2y+3z) \\\\\frac{dw}{dx}= 1\\\\(viii) \frac{dw}{dy} = \frac{d}{dy}(x-2y+3z) \\\\\frac{dw}{dy}= -2\\\\

(ix) \frac{dw}{dz} = \frac{d}{dz}(x-2y+3z) \\\\\frac{dw}{dz}= 3

=> Substituting the values in the determinant,

\left[\begin{array}{ccc}2x&-2&0\\1&1&1\\1&-2&3\end{array}\right]

=> Solving the determinant,

2x(3-(-2)) -(-2)(3-1)+0(-2-1)\\2x(3+4)+2(2)+0\\2x(7)+4\\14x+4

Hence the value of \frac{d(u,v,w)}{d(x,y,z)} = 14x + 4

Answered by pulakmath007
9

\displaystyle \sf{   \frac{ \partial (u,v,w)}{ \partial (x,y,z)}  = 10x + 4}

Given :

u = x² - 2y , v = x + y + z , w = x - 2y + 3z

To find :

\displaystyle \sf{   \frac{ \partial (u,v,w)}{ \partial (x,y,z)} }

Solution :

Step 1 of 3 :

Write down the given functions

Here it is given that

u = x² - 2y , v = x + y + z , w = x - 2y + 3z

Step 2 of 3 :

Find the partial derivatives

\displaystyle \sf{ \frac{ \partial u}{ \partial x}  = 2x }

\displaystyle \sf{ \frac{ \partial u}{ \partial y}  =  - 2 }

\displaystyle \sf{ \frac{ \partial u}{ \partial z}   = 0}

\displaystyle \sf{ \frac{ \partial v}{ \partial x}  } = 1

\displaystyle \sf{ \frac{ \partial v}{ \partial y}  } = 1

\displaystyle \sf{ \frac{ \partial v}{ \partial z}  } = 1

\displaystyle \sf{ \frac{ \partial w}{ \partial x}  } = 1

\displaystyle \sf{ \frac{ \partial w}{ \partial y}  } =  - 2

\displaystyle \sf{ \frac{ \partial w}{ \partial z}  } = 3

Step 3 of 3 :

Find the required value

\displaystyle \sf{   \frac{ \partial (u,v,w)}{ \partial (x,y,z)} }

= \displaystyle \begin{vmatrix}  \frac{ \partial  \sf u}{ \partial \sf x}  & \frac{ \partial \sf u}{ \partial \sf y} & \frac{ \partial \sf u}{ \partial \sf z}\\ \\  \frac{ \partial \sf v}{ \partial \sf x}  & \frac{ \partial \sf v}{ \partial \sf y} & \frac{ \partial \sf v}{ \partial \sf z} \\ \\ \frac{ \partial \sf w}{ \partial \sf x}  & \frac{ \partial \sf w}{ \partial \sf y} & \frac{ \partial \sf w}{ \partial \sf z} \end{vmatrix}

= \displaystyle \begin{vmatrix}   \sf 2x  & \sf  - 2 & 0\\ \\  1  & 1 & 1 \\ \\ 1  &  - 2 & 3 \end{vmatrix}

\displaystyle \sf{   = 2x(3 + 2) + 2(3 - 1) + 0}

\displaystyle \sf{   = 10x + 4}

Correct question : If u = x² - 2y , v = x + y + z , w = x - 2y + 3z find ∂(u,v,w)/∂(x,y,z)

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If u=y2/2x , v = x/2+y2/2x find ∂(u,v)/ ∂(x,y).

https://brainly.in/question/25724416

2. If x=u^2-v^2,y=2uv find the jacobian of x, y with respect to u and v

https://brainly.in/question/34361788

Similar questions