if u=(x²+y²+z²)^-1/2, find the value of (d²u/dx²+d²u/dy²+d²u/dz²)?
Answers
Answered by
1
Answer:
u=
x
2
+y
2
+z
2
dx
du
=
2
x
2
+y
2
+z
2
1
(2x)=
x
2
+y
2
+z
2
x
dx
2
d
2
u
=
(
x
2
+y
2
+z
2
)
2
x
2
+y
2
+z
2
dx
d
(x)−x
dx
d
(
x
2
+y
2
+z
2
)
=
x
2
+y
2
+z
2
x
2
+y
2
+z
2
−x
2
x
2
+y
2
+z
2
1
(2x)
=
(x
2
+y
2
+z
2
)
x
2
+y
2
+z
2
x
2
+y
2
+z
2
−x
2
=
(x
2
+y
2
+z
2
)
3/2
y
2
+z
2
Similarly,
dy
2
d
2
u
=
(x
2
+y
2
+z
2
)
3/2
x
2
+z
2
,
dz
2
d
2
u
=
(x
2
+y
2
+z
2
)
3/2
x
2
+y
2
u(
dx
2
d
2
u
+
dy
2
d
2
u
+
dz
2
d
2
u
)=
x
2
+y
2
+z
2
(
(x
2
+y
2
+z
2
)
3/2
2(x
2
+y
2
+z
2
)
).
=
(x
2
+y
2
+z
2
)
3/2
(x
2
+y
2
+z
2
)
3/2
.2
=2.
solution
Similar questions
Computer Science,
1 day ago
Math,
2 days ago
English,
2 days ago
Math,
8 months ago
Math,
8 months ago