Math, asked by nagendrakushwaha0709, 6 months ago

if u=y2/2 x v=x/2+y 2/2x find ∂(u v)/ ∂(x y)​

Answers

Answered by pulakmath007
1

\displaystyle \sf{ } \: \: \: \frac{ \partial(u,v)}{\partial(x,y)} = - \frac{y}{2x}

Given :

\displaystyle \sf{}u = \frac{ {y}^{2} }{2x} \: \: \: and \: \: v = \frac{x}{2} + \frac{ {y}^{2} }{2x}

To find :

\displaystyle \sf{ } \frac{ \partial(u,v)}{\partial(x,y)}

Concept :

If u and v are functions of two independent variables x and y then

\displaystyle \sf{ } \frac{ \partial(u,v)}{\partial(x,y)}

 \displaystyle  \sf = \begin{vmatrix} \frac{ \partial u}{ \partial x} &\frac{ \partial u}{ \partial y} \\ \frac{ \partial v}{ \partial x} & \frac{ \partial v}{ \partial y} \end{vmatrix}

This is called JACOBIAN of u and v with respect to x and y

Solution :

Step 1 of 3 :

Write down the given functions

Here it is given that

\displaystyle \sf{}u = \frac{ {y}^{2} }{2x} \: \: \: and \: \: v = \frac{x}{2} + \frac{ {y}^{2} }{2x}

Step 2 of 3 :

Find the partial derivatives of u and v

\displaystyle \sf{}u = \frac{ {y}^{2} }{2x} \: \: \: and \: \: v = \frac{x}{2} + \frac{ {y}^{2} }{2x}

So

\displaystyle \sf{} \frac{ \partial u}{ \partial x} = - \frac{ {y}^{2} }{2 {x}^{2} }

\displaystyle \sf{} \frac{ \partial u}{ \partial y} = \frac{y}{x}

\displaystyle \sf{} \frac{ \partial v}{ \partial x} = \frac{1}{2} - \frac{ {y}^{2} }{2 {x}^{2} }

\displaystyle \sf{} \frac{ \partial v}{ \partial y} = \frac{y}{x}

Step 3 of 3 :

Find the Jacobian

The Jacobian

\displaystyle \sf{ } \frac{ \partial(u,v)}{\partial(x,y)}

 \displaystyle  \sf = \begin{vmatrix} \frac{ \partial u}{ \partial x} &\frac{ \partial u}{ \partial y} \\ \\\frac{ \partial v}{ \partial x} & \frac{ \partial v}{ \partial y} \end{vmatrix}

 = \displaystyle \sf \begin{vmatrix} - \frac{ {y}^{2} }{2 {x}^{2} } & \frac{y}{x} \\ \\ \frac{1}{2} - \frac{ {y}^{2} }{2 {x}^{2} } & \frac{y}{x} \end{vmatrix}

 = \displaystyle \sf \begin{vmatrix} - \frac{ {y}^{2} }{2 {x}^{2} } & \frac{y}{x} \\ \\ \frac{1}{2} & 0 \end{vmatrix} \: \sf{} \: \: using \: \: \: R_2'= R_2 - R_1

 = \displaystyle \sf{} - \frac{y}{2x}

Thus we have

 \boxed{\displaystyle \sf{ } \: \: \: \frac{ \partial(u,v)}{\partial(x,y)} = - \frac{y}{2x} \: \: \: }

Answered by tamilcs62
0

Answer:

Step-by-step explanation:

Similar questions