Math, asked by vipulvarsha8732, 7 months ago

If u=y2/2x,v=x/2+y2/2x find d(u,v)/d(x,y)

Answers

Answered by mad210203
10

Given:

The given values are u=\frac{y^2}{2x} and v=\frac{x}{2} +\frac{y^2}{2x}.

To find:

We need to find the value of \frac{\partial(u,v)}{\partial(x,y)}.

Solution:

We know that, \frac{\partial(u,v)}{\partial(x,y)} is known as Jacobian.

The value of Jacobian is

=\frac{\partial(u,v)}{\partial(x,y)}=det  \ \ \[\begin{matrix}   \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}  \\   \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}  \\\end{matrix}\]

Where det represents determinant of the matrix.

First find the values of \frac{\partial u}{\partial x} , \frac{\partial u}{\partial y}  ,  \frac{\partial v}{\partial x} \ \text{and}\ \frac{\partial v}{\partial y}.

\frac{\partial u}{\partial x} =\[-\frac{{{y}^{2}}}{2{{x}^{2}}}\]

\frac{\partial u}{\partial y} =\[\frac{{{2y}}}{2{{x}}}\]

    =\[\frac{{{y}}}{{{x}}}\]

\frac{\partial v}{\partial x} \[=\frac{1}{2}-\frac{{{y}^{2}}}{2{{x}^{2}}}\]

\frac{\partial v}{\partial y} =0+\[\frac{{{2y}}}{2{{x}}}\]

    =\[\frac{{{y}}}{{{x}}}\]

Now substitute the above values in Jacobian.

\Rightarrow\frac{\partial(u,v)}{\partial(x,y)}=det  \ \ \[\begin{matrix}   \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}  \\   \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}  \\\end{matrix}\]

\[\Rightarrow\frac{\partial(u,v)}{\partial(x,y)}=det\ \ \begin{matrix}   -\frac{{{y}^{2}}}{2{{x}^{2}}} & \frac{y}{x}  \\   \frac{1}{2}-\frac{{{y}^{2}}}{2{{x}^{2}}} & \frac{y}{x}  \\\end{matrix}\]

Now, find the determinant of above value.

\Rightarrow\frac{\partial(u,v)}{\partial(x,y)}=-\frac{{{y}^{2}}}{2{{x}^{2}}}\times \frac{y}{x}-\frac{y}{x}\times \left( \frac{1}{2}-\frac{{{y}^{2}}}{2{{x}^{2}}} \right)

\Rightarrow \frac{\partial(u,v)}{\partial(x,y)}=-\frac{{{y}^{2}}}{2{{x}^{2}}}\times \frac{y}{x}-\frac{y}{x}\times \frac{1}{2}-\frac{y}{x}\times \left( -\frac{{{y}^{2}}}{2{{x}^{2}}} \right)

\Rightarrow \frac{\partial(u,v)}{\partial(x,y)}=-\frac{{{y}^{3}}}{2{{x}^{3}}}-\frac{y}{2x}+\frac{{{y}^{3}}}{2{{x}^{3}}}

Rearranging the terms,

\Rightarrow \frac{\partial(u,v)}{\partial(x,y)}=-\frac{{{y}^{3}}}{2{{x}^{3}}}+\frac{{{y}^{3}}}{2{{x}^{3}}}-\frac{y}{2x}

& \Rightarrow\frac{\partial(u,v)}{\partial(x,y)}=-\frac{y}{2x}

Therefore, the value \frac{\partial(u,v)}{\partial(x,y)} of is -\frac{y}{2x}.

Answered by pulakmath007
33

SOLUTION :

GIVEN

\displaystyle \sf{}u =  \frac{ {y}^{2} }{2x}  \:  \:  \: and \:  \: v =  \frac{x}{2}  +  \frac{ {y}^{2} }{2x}

TO DETERMINE

\displaystyle \sf{ }  \frac{ \partial(u,v)}{\partial(x,y)}

FORMULA TO BE IMPLEMENTED

If u and v are functions of two independent variables x and y then

\displaystyle \sf{ }  \frac{ \partial(u,v)}{\partial(x,y)}  = \displaystyle \begin{vmatrix}  \frac{ \partial u}{ \partial x}  & \frac{ \partial u}{ \partial y} \\ \frac{ \partial v}{ \partial x} & \frac{ \partial v}{ \partial y} \end{vmatrix}

This is called JACOBIAN of u and v with respect to x and y

EVALUATION

Here

\displaystyle \sf{}u =  \frac{ {y}^{2} }{2x}  \:  \:  \: and \:  \: v =  \frac{x}{2}  +  \frac{ {y}^{2} }{2x}

So

\displaystyle \sf{} \frac{ \partial u}{ \partial x}  =  -  \frac{ {y}^{2} }{2 {x}^{2} }

\displaystyle \sf{} \frac{ \partial u}{ \partial y}  =   \frac{y}{x}

\displaystyle \sf{} \frac{ \partial v}{ \partial x}  =  \frac{1}{2}  -  \frac{ {y}^{2} }{2 {x}^{2} }

\displaystyle \sf{} \frac{ \partial v}{ \partial y}  =  \frac{y}{x}

So

\displaystyle \sf{ }  \frac{ \partial(u,v)}{\partial(x,y)}  = \displaystyle \begin{vmatrix}  \frac{ \partial u}{ \partial x}  & \frac{ \partial u}{ \partial y} \\ \frac{ \partial v}{ \partial x} & \frac{ \partial v}{ \partial y} \end{vmatrix}

 = \displaystyle \begin{vmatrix}    - \frac{ {y}^{2} }{2 {x}^{2} }   & \frac{y}{x} \\  \frac{1}{2}  - \frac{ {y}^{2} }{2 {x}^{2} } & \frac{y}{x} \end{vmatrix}

 = \displaystyle \begin{vmatrix}    - \frac{ {y}^{2} }{2 {x}^{2} }   & \frac{y}{x} \\  \frac{1}{2}  & 0 \end{vmatrix} \:   \sf{} \:  \:  using \:  \: \: R_2'= R_2 -  R_1

 = \displaystyle  \sf{} -  \frac{y}{2x}

FINAL RESULT

 \boxed{\displaystyle \sf{ }  \:  \:  \:  \frac{ \partial(u,v)}{\partial(x,y)} =  -  \frac{y}{2x} \:  \:  \:   }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

General solution of dy/dx -3y =sin2x

https://brainly.in/question/24725748

Similar questions