Math, asked by ajkl6399, 8 months ago

If u=y2/2x , v = x/2+y2/2x find ∂(u,v)/ ∂(x,y).

Answers

Answered by pulakmath007
37

SOLUTION :

GIVEN

\displaystyle \sf{}u =  \frac{ {y}^{2} }{2x}  \:  \:  \: and \:  \: v =  \frac{x}{2}  +  \frac{ {y}^{2} }{2x}

TO DETERMINE

\displaystyle \sf{ }  \frac{ \partial(u,v)}{\partial(x,y)}

FORMULA TO BE IMPLEMENTED

If u and v are functions of two independent variables x and y then

\displaystyle \sf{ }  \frac{ \partial(u,v)}{\partial(x,y)}  = \displaystyle \begin{vmatrix}  \frac{ \partial u}{ \partial x}  & \frac{ \partial u}{ \partial y} \\ \frac{ \partial v}{ \partial x} & \frac{ \partial v}{ \partial y} \end{vmatrix}

This is called JACOBIAN of u and v with respect to x and y

EVALUATION

Here

\displaystyle \sf{}u =  \frac{ {y}^{2} }{2x}  \:  \:  \: and \:  \: v =  \frac{x}{2}  +  \frac{ {y}^{2} }{2x}

So

\displaystyle \sf{} \frac{ \partial u}{ \partial x}  =  -  \frac{ {y}^{2} }{2 {x}^{2} }

\displaystyle \sf{} \frac{ \partial u}{ \partial y}  =   \frac{y}{x}

\displaystyle \sf{} \frac{ \partial v}{ \partial x}  =  \frac{1}{2}  -  \frac{ {y}^{2} }{2 {x}^{2} }

\displaystyle \sf{} \frac{ \partial v}{ \partial y}  =  \frac{y}{x}

So

\displaystyle \sf{ }  \frac{ \partial(u,v)}{\partial(x,y)}  = \displaystyle \begin{vmatrix}  \frac{ \partial u}{ \partial x}  & \frac{ \partial u}{ \partial y} \\ \frac{ \partial v}{ \partial x} & \frac{ \partial v}{ \partial y} \end{vmatrix}

 = \displaystyle \begin{vmatrix}    - \frac{ {y}^{2} }{2 {x}^{2} }   & \frac{y}{x} \\  \frac{1}{2}  - \frac{ {y}^{2} }{2 {x}^{2} } & \frac{y}{x} \end{vmatrix}

 = \displaystyle \begin{vmatrix}    - \frac{ {y}^{2} }{2 {x}^{2} }   & \frac{y}{x} \\  \frac{1}{2}  & 0 \end{vmatrix} \:   \sf{} \:  \:  using \:  \: \: R_2'= R_2 -  R_1

 = \displaystyle  \sf{} -  \frac{y}{2x}

FINAL RESULT

 \boxed{\displaystyle \sf{ }  \:  \:  \:  \frac{ \partial(u,v)}{\partial(x,y)} =  -  \frac{y}{2x} \:  \:  \:   }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

General solution of dy/dx -3y =sin2x

https://brainly.in/question/24725748

Similar questions