Math, asked by meenaprasad1161, 1 year ago

If underoot7+4 root 3=x the x+1/x is what

Answers

Answered by DaIncredible
0
Hey friend,
Here is the answer you were looking for:
x =  \sqrt{7}  + 4 \sqrt{3}  \\  \\  \frac{1}{x}  =  \frac{1}{ \sqrt{7} + 4 \sqrt{3}  }   \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  \frac{1}{x}  =  \frac{1}{ \sqrt{7} + 4 \sqrt{3}  }  \times  \frac{ \sqrt{7}  - 4 \sqrt{3} }{ \sqrt{7}  - 4 \sqrt{3} }  \\  \\ using \: the \: identity \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  \frac{1}{x}  =  \frac{ \sqrt{7}  - 4 \sqrt{3} }{ {(7)}^{2} -  {(4 \sqrt{3} )}^{2}  }  \\  \\   \frac{1}{x}  =  \frac{ \sqrt{7} - 4 \sqrt{3}  }{49 - 48}  \\  \\  \frac{1}{x}  =  \sqrt{7}  - 4 \sqrt{3}  \\  \\ x +  \frac{1}{x}  = ( \sqrt{7}  + 4 \sqrt{3} ) + ( \sqrt{7}  - 4 \sqrt{3} ) \\  \\ x +  \frac{1}{x}  =  \sqrt{7}  + 4 \sqrt{3}  +  \sqrt{7}  - 4 \sqrt{3}  \\  \\ x +  \frac{1}{x}  =  \sqrt{7}  +  \sqrt{7}  \\  \\ x +  \frac{1}{x}  = 2 \sqrt{7}


Hope this helps!!!

@Mahak24

Thanks...
☺☺
Similar questions