Math, asked by jashan2372, 6 months ago

If [underroot3+1/underroot3-1=a+b underroot 3 ]find thevalue of a and b

Answers

Answered by VishnuPriya2801
16

Answer:-

Given:

 \sf  \dfrac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 }  = a + b \sqrt{3}

Multiplying numerator and denominator by 3 + 1 in LHS we get,

  \implies \sf \: \frac{( \sqrt{3 }  + 1)( \sqrt{3}  + 1)}{( \sqrt{3} - 1)( \sqrt{3}   + 1)}  = a + b \sqrt{3}  \\

using (a + b)(a - b) = a² - & (a + b)(a + b) = (a + b)² = + + 2ab we get,

 \implies \sf \:  \frac{ {( \sqrt{3} )}^{2} +  {1}^{2}  + 2 \sqrt{3}  }{( \sqrt{3)}  ^{2}  -  {1}^{2} }  = a + b \sqrt{3}  \\  \\ \implies \sf \: \frac{3 + 1 + 2 \sqrt{3} }{3 - 1}  = a + b \sqrt{3}  \\  \\ \implies \sf \: \frac{4 + 2 \sqrt{3} }{2}  = a + b \sqrt{3}  \\  \\ \implies \sf \: \frac{4}{2}  +  \frac{2 \sqrt{3} }{2}  = a + b \sqrt{3}  \\  \\ \implies \boxed{ \sf \:2 +  \sqrt{3}  = a + b \sqrt{3} }

On comparing both sides we get,

  • a = 2

  • b = 1

Answered by Anonymous
6

(√3 + 1)/(√3 - 1) = a + b√3

→ (√3 + 1)/(√3 - 1) . (√3 + 1)/(√3 + 1) = a + b√3 {This is called rationalising}

→ (3 + 1 + 2√3)/(3 - 1) = a + b√3 {Use suitable identities and simplify}

→ (4 + 2√3)/2 = a + b√3

→ 2 + √3 = a + b√3

Thus:- a = 2, b = 1

Similar questions