Physics, asked by Komalram, 11 months ago

If v, = 3i+4j+k and v= i-j-k,
determine the magnitude of v1 +v2.​

Answers

Answered by hukam0685
9

Answer:

|\vec V_1 + \vec V_2| = 5 \\ \\

Explanation:

 \vec V_1 = 3 \hat i + 4\hat j + \hat k \\  \\ \vec V_2 =  \hat i  - \hat j  -  \hat k \\  \\ \vec V_1 + \vec V_2  = (3 + 1)\hat i + (4 - 1)\hat j + (1 - 1)\hat k \\  \\ \vec V_1 + \vec V_2  = 4\hat i + 3\hat j + 0\hat k \\  \\ \vec V_1 + \vec V_2  = 4\hat i + 3\hat j \\  \\  |\vec V_1 + \vec V_2 |  =  \sqrt{ {4}^{2}  +  {3}^{2} }  \\  \\  =  \sqrt{16 + 9}  \\  \\  =\sqrt{25}  \\  \\ |\vec V_1 + \vec V_2 | = 5 \\  \\

Thus magnitude of v1+v2 = 5 units.

Hope it helps you.

Answered by Anonymous
3

Answer:

|\vec V_1 + \vec V_2| = 5 \\ \\

Explanation:

 \vec V_1 = 3 \hat i + 4\hat j + \hat k \\  \\ \vec V_2 =  \hat i  - \hat j  -  \hat k \\  \\ \vec V_1 + \vec V_2  = (3 + 1)\hat i + (4 - 1)\hat j + (1 - 1)\hat k \\  \\ \vec V_1 + \vec V_2  = 4\hat i + 3\hat j + 0\hat k \\  \\ \vec V_1 + \vec V_2  = 4\hat i + 3\hat j \\  \\  |\vec V_1 + \vec V_2 |  =  \sqrt{ {4}^{2}  +  {3}^{2} }  \\  \\  =  \sqrt{16 + 9}  \\  \\  =\sqrt{25}  \\  \\ |\vec V_1 + \vec V_2 | = 5 \\  \\

Thus magnitude of v1+v2 = 5 units.

Similar questions