Math, asked by aryamannpaliwal, 3 months ago

If V and S represent respectively the volume & surface area of a cuboid of length l, breadth b and height h. Prove that 1/v=2/s(1/l+1/b+1/h)

Answers

Answered by pulakmath007
2

SOLUTION

GIVEN

V and S represent respectively the volume & surface area of a cuboid of length l, breadth b and height h.

TO PROVE

 \displaystyle \sf{ \frac{1}{V}  =  \frac{2}{S} \bigg( \:  \frac{1}{l}  +  \frac{1}{b}  +  \frac{1}{h}  \bigg) }

EVALUATION

Here it is given that V and S represent respectively the volume & surface area of a cuboid of length l, breadth b and height h.

∴ V = lbh

∴ S = 2( lb + lh + bh )

Now

LHS

 \displaystyle \sf{ =  \frac{1}{V}   }

 \displaystyle \sf{  = \frac{1}{lbh}  }

RHS

 \displaystyle \sf{   =  \frac{2}{S} \bigg( \:  \frac{1}{l}  +  \frac{1}{b}  +  \frac{1}{h}  \bigg) }

 \displaystyle \sf{   =  \frac{2}{S} \bigg( \:  \frac{lb  + lh + bh}{lbh}   \bigg) }

 \displaystyle \sf{   =  \frac{S}{S}  \times  \frac{1}{lbh} }

 \displaystyle \sf{   =   \frac{1}{lbh} }

∴ LHS = RHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If base radius of a cylinder is doubled then the volume of new cylinder = ______times the volume of given cylinder

https://brainly.in/question/33235561

2. If the radii of two spheres are 3cm and 4cm..

which one of the following gives the radius of the sphere whose surface

https://brainly.in/question/28238236

Answered by vikalpkanwat1234
0

Step-by-step explanation:

SOLUTION

GIVEN

V and S represent respectively the volume & surface area of a cuboid of length l, breadth b and height h.

TO PROVE

\displaystyle \sf{ \frac{1}{V} = \frac{2}{S} \bigg( \: \frac{1}{l} + \frac{1}{b} + \frac{1}{h} \bigg) }

V

1

=

S

2

(

l

1

+

b

1

+

h

1

)

EVALUATION

Here it is given that V and S represent respectively the volume & surface area of a cuboid of length l, breadth b and height h.

∴ V = lbh

∴ S = 2( lb + lh + bh )

Now

LHS

\displaystyle \sf{ = \frac{1}{V} }=

V

1

\displaystyle \sf{ = \frac{1}{lbh} }=

lbh

1

RHS

\displaystyle \sf{ = \frac{2}{S} \bigg( \: \frac{1}{l} + \frac{1}{b} + \frac{1}{h} \bigg) }=

S

2

(

l

1

+

b

1

+

h

1

)

\displaystyle \sf{ = \frac{2}{S} \bigg( \: \frac{lb + lh + bh}{lbh} \bigg) }=

S

2

(

lbh

lb+lh+bh

)

\displaystyle \sf{ = \frac{S}{S} \times \frac{1}{lbh} }=

S

S

×

lbh

1

\displaystyle \sf{ = \frac{1}{lbh} }=

lbh

1

∴ LHS = RHS

Hence proved

━━━━━━━━━━━━━━━━

Similar questions