Math, asked by michaelgimmy, 7 months ago

If 'V' is the 'Volume of a Cuboid' of Dimensions a, b c and 'S' is its 'Surface Area' then Prove that \boxed {\frac{1}{V} = \frac{2}{S} \Big (\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \Big )}
-
NOTE :- \mathfrak {\red {Spams\: will\: be\: Deleted\: on\: the \: Spot :) }}
\mathfrak {\bold {Topic} - Class\: 9 - Volume\: and\: Surface\: Areas\: of\: Solids}
#HappyLearning!

Answers

Answered by manissaha129
2

Answer:

hence, \:  \\  \frac{1}{V}  =  \frac{2}{S} ( \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c} ) \\

where, V is the volume

a,b,c are the sides

and, S the surface area

please refer to the above attachment

hope this will help you.

Attachments:
Answered by Anonymous
1

Solution :-

Given,

Dimensions of the Cuboid are a, b and c.

Volume of the Cuboid, V = abc and Surface Area of the Cuboid, S = \bold {2(ab + bc + ac)}

-

To Prove, \bold {\frac{1}{V} = \frac{2}{S} \Big [\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \Big ]}

-

Consider LHS to be \bold {\frac{1}{V} = \frac{1}{abc}}  . . . (1)

Consider RHS to be,

\begin {aligned} \bold {\frac{2}{S} \Big [\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \Big ]} &= \bold {\frac{2}{2(ab + bc + ac)} \Big [\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \Big ]}\\\\\\& \Rightarrow \frac{1}{ab + bc + ac} \Big [\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \Big ]\\\\\\& \Rightarrow \frac{1}{ab + bc + ac} \Big [\frac{ab + bc + ac}{abc} \Big ]\\\\\\& = \bold {\frac{1}{abc}} \\\\\\\bold {\frac{2}{S} \Big [\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \Big ]} & = \bold {\frac{1}{abc}} \end {aligned}

From . . . (1) and  . . . (2), we get \bold {\frac{1}{V} = \frac{2}{S} \Big [\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \Big ]}

Hence, Proved . . . :)

Similar questions