Math, asked by boss7289, 5 months ago

If V is the volume of a cuboid of dimensions a , b , c and S is its surface area , then prove that :-

 \sf \:  \dfrac{1}{v}  =  \dfrac{2}{s}  \bigg( \dfrac{1}{a}  +  \dfrac{1}{b}  +  \dfrac{1}{c}  \bigg)
Class 8 Maths Question .​

Answers

Answered by prince5132
78

GIVEN :-

If V is the volume of a cuboid of dimensions a , b , c and S is its surface area , then prove that :-

 \sf \: \dfrac{1}{V} = \dfrac{2}{S} \bigg( \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} \bigg)

PROOF :-

Taking RHS,

 \implies \:  \sf \:  \dfrac{2}{S} \bigg( \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} \bigg) \\

  \implies \:  \sf \:  \dfrac{2}{S} \bigg( \dfrac{bc + ca + ab}{abc}  \bigg) \\

  \implies \:  \sf \:   \dfrac{2(bc + ca + ab)}{S \times abc}   \\

Now as we know that S of cuboid = 2(lb + bh + lh) on substituting the values we get,

  \implies \:  \sf \:  \dfrac{ \cancel{2(bc + ca + ab)}}{ \cancel{2(bc + ca + ab) }\times abc}   \\

\implies \sf \:   \dfrac{1}{abc}  =  \dfrac{1}{V}

Hence Proved .

Answered by Anonymous
83

______________________________

Question:-

If V is the volume of a cuboid of dimensions a , b , c and S is its surface area , then prove that :-

\sf \frac{1}{v}  =  \frac{2}{s} ( \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c} ) \\

______________________________

Given:-

  • The dimensions of cuboid are a,b and c

______________________________

Solution:-

We know that,

• Volume of the cuboid V = abc

• surface area of cuboid S = 2(ab + bc + ac)

\sf \frac{1}{v}  =  \frac{2}{s} ( \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c} ) \\

By Taking RHS,

\sf\green\implies \:  \frac{2}{s} ( \frac{1}{a} +  \frac{1}{b}  +  \frac{1}{c} ) \\

\sf\pink\implies \:  \frac{2}{s} ( \frac{bc + ca + ab)}{abc} ) \\

\sf\red\implies \:  \frac{2(bc + ca + ab)}{s \times abc}  \\

we know,

That Surface (S) of cuboid = 2(lb + bh + lh)

On substituting Values,

\sf\implies \cancel\frac{2(bc +ca + ab)}{2(bc + ca + ab) \times abc}

\star{\boxed{\sf{ \frac{1}{abc} =  \frac{1}{v}  }}}

______________________________

Similar questions