Math, asked by gurteg8634, 11 months ago

If V is the volumw of cuboid of dimensions a,b,c and S is its surface area, then prove that 1/V = 2/S( 1/a + 1/b + 1/c)

Answers

Answered by MaheswariS
0

\textbf{Given:}

\text{Surface area of cuboid, S}=2(ab+bc+ca)

\text{Volume of cuboid, V}=abc

\text{Now,}

S=2(ab+bc+ca)

\text{This can be written as}

S=\displaystyle2(\frac{abc}{c}+\frac{abc}{a}+\frac{abc}{b})

\text{Taking abc as common}

S=\displaystyle2(abc)(\frac{1}{c}+\frac{1}{a}+\frac{1}{b})

S=\displaystyle2(V)(\frac{1}{c}+\frac{1}{a}+\frac{1}{b})

\frac{S}{2}=\displaystyle\,V(\frac{1}{c}+\frac{1}{a}+\frac{1}{b})

\implies\boxed{\bf\frac{1}{V}=\frac{2}{S}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})}

Similar questions