If v=(x^2+y^2+z^2 )^(-1/2) then (∂^2 v)/(∂x^2 )+(∂^2 v)/(∂y^2 )+(∂^2 v)/(∂z^2 )= ?
Answers
Answer:
ooooooooooookkkkkkkkkk
The value of (∂^2v)/(∂x^2) + (∂^2v)/(∂y^2) + (∂^2v)/(∂z^2) is 0.
Concept :
To find the value of (∂^2v)/(∂x^2) + (∂^2v)/(∂y^2) + (∂^2v)/(∂z^2), we need to first find the second partial derivatives of v with respect to x, y, and z.
Let's Solve It !
We have:
↝ v = (x^2 + y^2 + z^2)^(-1/2)
Taking the partial derivative of v with respect to x, we get:
↝ ∂v/∂x = (-1/2)(x^2 + y^2 + z^2)^(-3/2) * 2x
↝ -x(x^2 + y^2 + z^2)^(-3/2)
Taking the partial derivative of ∂v/∂x with respect to x again, we get:
↝ ∂^2v/∂x^2 = (-1)(x^2 + y^2 + z^2)^(-3/2) + (-3/2)(-x)(-1/2)(x^2 + y^2 + z^2)^(-5/2) * 2x^2
↝ (x^2 - y^2 - z^2)(x^2 + y^2 + z^2)^(-5/2)
Now, taking the second partial derivative of v with respect to y and z, we get:
↝ ∂^2v/∂y^2 = (y^2 - x^2 - z^2)(x^2 + y^2 + z^2)^(-5/2)
↝ ∂^2v/∂z^2 = (z^2 - x^2 - y^2)(x^2 + y^2 + z^2)^(-5/2)
Therefore, we have:
↝ (∂^2v)/(∂x^2) + (∂^2v)/(∂y^2) + (∂^2v)/(∂z^2)
↝ (x^2 - y^2 - z^2)(x^2 + y^2 + z^2)^(-5/2) + (y^2 - x^2 - z^2)(x^2 + y^2 + z^2)^(-5/2) + (z^2 - x^2 - y^2)(x^2 + y^2 + z^2)^(-5/2)
Simplifying, we get:
(∂^2v)/(∂x^2) + (∂^2v)/(∂y^2) + (∂^2v)/(∂z^2) = 0
Therefore, the value of (∂^2v)/(∂x^2) + (∂^2v)/(∂y^2) + (∂^2v)/(∂z^2) is zero/0.