Math, asked by subham3491, 1 day ago

if V5+√3/V5-V3= a-v15b, find the value of a and b?​

Answers

Answered by linanguyenyt
0

Answer:

a = (\sqrt{5} -\sqrt{3})

b = -1/5

Step-by-step explanation:

\sqrt{5} +\frac{ \sqrt{3} }{\sqrt{5} }-\sqrt{3} = a-\sqrt{15} b

= \frac{\sqrt{5}.\sqrt{5}+\sqrt{3}-\sqrt{3} .\sqrt{5} }{\sqrt{5} } = a - \sqrt{15} b

= \frac{5+\sqrt{3}-\sqrt{15}  }{\sqrt{5} } = a - \sqrt{15} b

= \frac{5+\sqrt{3}-\sqrt{15}  }{\sqrt{5} }. (\frac{\sqrt{5} }{\sqrt{5} } ) = (a - b\sqrt{15}  )

= \frac{(5+\sqrt{3}-\sqrt{15}). (\sqrt{5}  ) }{\sqrt{5} . \sqrt{5} }=  a - b\sqrt{15}

= \frac{5\sqrt{5}+\sqrt{15}-5\sqrt{3}}{5}=  a - b\sqrt{15}

= \frac{5(\sqrt{5}-\sqrt{3})+\sqrt{15}   }{5} = a - b\sqrt{15}

=  (\sqrt{5} - \sqrt{3} ) +\frac{\sqrt{15} }{5} = a - b\sqrt{15}

=> a = \sqrt{5} -\sqrt{3}

=> b = \frac{-1}{5}

Similar questions