Math, asked by bhavin1020814, 4 months ago

if value of determinant 3√6 –4√2
5√3 x

is 26√6 , find the value ​

Answers

Answered by divyajadhav66
8

 \bold{given}

 |  \sqrt[3]{6} \:  \:  \:  \:  \:  -  \sqrt[4]{2 \: } \:     | = \sqrt[26]{6}

 \sqrt[5]{3}  \:  \:  \: x \:  =  \sqrt[26]{6}

 \bold{to \:  find}

the \: value \: of \: x \:

consider

 | \sqrt[3]{6} \:  \:  - 4 \sqrt{2}  | \\  | \sqrt[5]{3} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  x\:  \:  \:  |  =  \sqrt[26]{6}

expanding \: we \: get

3x \sqrt{6}  + 20 \sqrt{6}

 \to \: 3x \sqrt{6 }  = 26 \sqrt{6}  - 26 \sqrt{6}

 \to \: 3x \sqrt{6}  =  6\sqrt{6}

 \to \: 3x = 6

 \to  \boxed{x = 2}

 \therefore  \bold{the \: value \: of \: x \: is \: 2}

Find more:

The sum of the real roots of the equation | x 6 1 |

| 2 3x (x - 3)| = 0 | 3 2x (x = 2)|

is equal to (A) -4 (B) 0

hope it helps you

Similar questions