Math, asked by aniruddh420, 5 months ago

if value of theta is 30° then find the value of 1 - tan^2 theta / 1 + tan^2 theta​

Answers

Answered by itzBrainlymaster
2

Answer:

0=0 is your dear .....

step by step explanation :

Given θ=30

To verify,

(i) tan2θ=

1−tan

2

θ

2tanθ

tan2(30

)=

1−tan

2

30

2tan30

tan(60

)=

1−tan

2

30

2tan30

3

=

1−(

3

1

)

2

3

1

3

=

1−(

3

1

)

3

2

3

=

3

2

3

2

3

=

3

(ii) tan2θ=

1+tan

2

θ

4tanθ

We have, 1+tan

2

θ=sec

2

θ

∴tan2θ=

sec

2

θ

4tanθ

tan2(30

)=

sec

2

30

4tan30

tan(60

)=

sec

2

30

4tan30

3

=

(

3

2

)

2

4

3

1

3

=

3

4

3

4

3

=

3

3

3

=

3

(iii) cos2θ=

1+tan

2

θ

1−tan

2

θ

cos2(30

)=

1+tan

2

30

1−tan

2

30

cos60

=

1+tan

2

30

1−tan

2

30

2

1

=

1+(

3

1

)

2

1−(

3

1

)

2

2

1

=

3+1

3−1

2

1

=

4

2

2

1

=

2

1

(iv) cos3θ=4cos

3

θ−3cosθ

cos3(30

)=4cos

3

30

−3cos30

cos(90

)=4(cos

3

30

)−3cos30

0=4(

2

3

)

3

−3(

2

3

)

0=4(

8

3

3

)−3(

2

3

)

0=3(

2

3

)−3(

2

3

)

0=0

Similar questions