if value of x= 3root5+2root2 and value of y=3root5–2root2 then find (x²–y²)²
Answers
Step-by-step explanation:
Given :-
x = 3√5+2√2
y = 3√5-2√2
To find :-
Find the value of (x^2-y^2)^2 ?
Solution:-
Given that :-
x = 3√5+2√2 -------(1)
y = 3√5-2√2 --------(2)
Method-1:-
x = 3√5+2√2 -------(1)
On squaring both sides then
=> x^2 = (3√5+2√2)^2
=> x^2 = (3√5)^2+2(3√5)(2√2)+(2√2)^2
Since (a+b)^2 = a^2+2ab+b^2
=>x^2 = 45+12√10+8
=>x^2 = 53+12√10-----------(3)
y = 3√5-2√2 --------(2)
On squaring both sides then
=> y^2 = (3√5-2√2)^2
=> y^2 = (3√5)^2-2(3√5)(2√2)+(2√2)^2
Since (a-b)^2 = a^2-2ab+b^2
=>y^2 = 45-12√10+8
=>y^2 = 53-12√10-----------(4)
Now,
(3)-(4)=>
x^2-y^2
=>( 53+12√10)-(53-12√10)
=> 53+12√10-53+12√10
=> (53-53)+(12√10+12√10)
=> 0+24√10
=>x^2-y^2 = 24√10--------(5)
Now,
(x^2-y^2)^2
From (5)
=> (24√10)^2
=> 24^2×(√10)^2
=> 576×10
=> 5760
Method -2:-
Given that :-
x = 3√5+2√2 -------(1)
y = 3√5-2√2 --------(2)
On adding (1)&(2)
x+y = 3√5+2√2+3√5-2√2
=> x+y = 3√5+3√5
=> x+y = (3+3)√5
x+y = 6√5-----------(3)
on Subtracting (2) from (1)
x-y = (3√5+2√2)-(3√5-2√2)
=>x-y = 3√5+2√2-3√5+2√2
=> x-y = 2√2+2√2
=>x-y = (2+2)√2
=>x-y = 4√2--------(4)
On multiplying (3)&(4)
=>(x+y)(x-y)
=> (6√5)(4√2)
=> (x+y)(x-y) = (6×4×√5×√2)
=> x^2-y^2 = 24√10------(5)
Since (a+b)(a-b)=a^2-b^2
Now ,
(x^2-y^2)^2
=> [24√10]^2
=> 24^2×(√10)^2
=> 576×10
=> 5760
Answer:-
The value of (x^2-y^2)^2 for the given problem is 5760
Used formulae:-
- (a+b)^2 = a^2+2ab+b^2
- (a-b)^2 = a^2-2ab+b^2
- (a+b)(a-b)=a^2-b^2
- (ab)^m = a^m × a^n