Math, asked by unknownbro72, 10 months ago

If | vec A - vec B |=| vec A |=| vec B | the angle between vec A and vec B is​

Answers

Answered by MaheswariS
5

\underline{\textbf{Given:}}

\mathsf{|\overrightarrow{a}-\overrightarrow{b}|=|\overrightarrow{a}|=|\overrightarrow{b}|}

\underline{\textbf{To find:}}

\mathsf{The\;angle\;between\;\overrightarrow{a}\;and\;\overrightarrow{b}}

\underline{\textbf{Solution:}}

\underline{\textbf{Concept used:}}

\mathsf{|\overrightarrow{a}-\overrightarrow{b}|^2=|\overrightarrow{a}|^2+|\overrightarrow{b}|^2-2\;\overrightarrow{a}.\overrightarrow{b}}

\mathsf{Consider,}

\mathsf{|\overrightarrow{a}-\overrightarrow{b}|=|\overrightarrow{a}|=|\overrightarrow{b}|=k(say)}

\mathsf{Now,}

\mathsf{|\overrightarrow{a}-\overrightarrow{b}|^2=|\overrightarrow{a}|^2+|\overrightarrow{b}|^2-2\;\overrightarrow{a}.\overrightarrow{b}}

\mathsf{|\overrightarrow{a}-\overrightarrow{b}|^2=|\overrightarrow{a}|^2+|\overrightarrow{b}|^2-2\;|\overrightarrow{a}|\;|\overrightarrow{b}|\;cos\theta}

\mathsf{k^2=k^2+k^2-2(k)(k)\;cos\theta}

\mathsf{-k^2=-2k^2\;cos\theta}

\mathsf{1=2cos\theta}

\implies\mathsf{cos\theta=\dfrac{1}{2}}

\implies\mathsf{\theta=\dfrac{\pi}{3}\;(or)\;60^\circ}

Similar questions