Physics, asked by rachit628, 7 months ago


If vector A=2i+2j+3k and vector B=3i-2j-4k, find cross product and angle b/w A and B?​

Answers

Answered by MaheswariS
4

\textbf{Given:}

\mathrm{\overrightarrow{a}=2\overrightarrow{i}+2\overrightarrow{j}+3\overrightarrow{k}}

\mathrm{\overrightarrow{b}=3\overrightarrow{i}-2\overrightarrow{j}-4\overrightarrow{k}}

\textbf{To find:}

\mathrm{\overrightarrow{a}{\times}\overrightarrow{b}}

\text{and angle between the given vectors}

\textbf{Solution:}

\text{The cross product of given two vectors is,}

\mathrm{\overrightarrow{a}{\times}\overrightarrow{b}=\left|\begin{array}{ccc}\overrightarrow{i}&\overrightarrow{j}&\overrightarrow{k}\\2&2&3\\3&-2&-4\end{array}\right|}

\mathrm{=(-8+6)\overrightarrow{i}-(-8-9)\overrightarrow{j}+(-4-6)\overrightarrow{k}}

\mathrm{=-2\overrightarrow{i}+17\overrightarrow{j}-10\overrightarrow{k}}

\implies\mathrm{\bf\overrightarrow{a}{\times}\overrightarrow{b}=-2\overrightarrow{i}+17\overrightarrow{j}-10\overrightarrow{k}}

\text{Let $\theta$ be the angle between given two vectors}

\mathrm{cos\,\theta=\dfrac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}|\;|\overrightarrow{b}|}}

\mathrm{cos\,\theta=\dfrac{2(3)+2(-2)+3(-4)}{\sqrt{4+4+9\;}\sqrt{9+4+16}}}

\mathrm{cos\,\theta=\dfrac{6-4-12}{\sqrt{17}\;\sqrt{29}}}

\mathrm{cos\,\theta=\dfrac{-10}{\sqrt{17}\;\sqrt{29}}}

\implies\boxed{\mathrm{\bf\theta=cos^{-1}(\dfrac{-10}{\sqrt{17}\;\sqrt{29}})}}

Answered by Anonymous
7

\textbf{Given:}

\mathrm{\overrightarrow{a}=2\overrightarrow{i}+2\overrightarrow{j}+3\overrightarrow{k}}

\mathrm{\overrightarrow{b}=3\overrightarrow{i}-2\overrightarrow{j}-4\overrightarrow{k}}

\textbf{To find:}

\mathrm{\overrightarrow{a}{\times}\overrightarrow{b}}

\text{and angle between the given vectors}

\textbf{Solution:}

\text{The cross product of given two vectors is,}

\mathrm{\overrightarrow{a}{\times}\overrightarrow{b}=\left|\begin{array}{ccc}\overrightarrow{i}&\overrightarrow{j}&\overrightarrow{k}\\2&2&3\\3&-2&-4\end{array}\right|}

\mathrm{=(-8+6)\overrightarrow{i}-(-8-9)\overrightarrow{j}+(-4-6)\overrightarrow{k}}

\mathrm{=-2\overrightarrow{i}+17\overrightarrow{j}-10\overrightarrow{k}}

\implies\mathrm{\bf\overrightarrow{a}{\times}\overrightarrow{b}=-2\overrightarrow{i}+17\overrightarrow{j}-10\overrightarrow{k}}

\text{Let $\theta$ be the angle between given two vectors}

\mathrm{cos\,\theta=\dfrac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}|\;|\overrightarrow{b}|}}

\mathrm{cos\,\theta=\dfrac{2(3)+2(-2)+3(-4)}{\sqrt{4+4+9\;}\sqrt{9+4+16}}}

\mathrm{cos\,\theta=\dfrac{6-4-12}{\sqrt{17}\;\sqrt{29}}}

\mathrm{cos\,\theta=\dfrac{-10}{\sqrt{17}\;\sqrt{29}}}

\implies\boxed{\mathrm{\bf\theta=cos^{-1}(\dfrac{-10}{\sqrt{17}\;\sqrt{29}})}}

Similar questions