Math, asked by virushp9818, 1 year ago

If vector a = 2i+3j+6k and b=3i+4j then find projection of a on b also find projection of b on a

Answers

Answered by pinquancaro
30

Answer:

The projection of \vec{a} on \vec{b} is 3.

The projection of \vec{b} on \vec{a} is \frac{15}{7}.

Step-by-step explanation:

Given : If vector a = 2i+3j+6k and b=3i+4j.

To find : Projection of a on b also projection of b on a?

Solution :

The formula of projection of \vec{a} on \vec{b} is =\frac{1}{|\vec{b}|}(\vec{a}\cdot\vec{b})

a = 2i+3j+6k and b=3i+4j

\vec{a}\cdot\vec{b}=2(3)+3(3)+6(0)

\vec{a}\cdot\vec{b}=6+9+0

\vec{a}\cdot\vec{b}=15

Magnitude of b,

|\vec{b}|=\sqrt{3^2+4^2}

|\vec{b}|=\sqrt{9+16}

|\vec{b}|=\sqrt{25}

|\vec{b}|=5

Substitute the value in the formula,

Projection of \vec{a} on \vec{b} is =\frac{1}{|\vec{b}|}(\vec{a}\cdot\vec{b})

=\frac{1}{5}(15)

=3

The projection of \vec{a} on \vec{b} is 3.

The formula of projection of \vec{b} on \vec{a} is =\frac{1}{|\vec{a}|}(\vec{a}\cdot\vec{b})

a = 2i+3j+6k and b=3i+4j

\vec{a}\cdot\vec{b}=15

Magnitude of a,

|\vec{a}|=\sqrt{2^2+3^2+6^2}

|\vec{a}|=\sqrt{4+9+36}

|\vec{a}|=\sqrt{49}

|\vec{a}|=7

Substitute the value in the formula,

Projection of \vec{b} on \vec{a} is =\frac{1}{|\vec{b}|}(\vec{a}\cdot\vec{b})

=\frac{1}{7}(15)

=\frac{15}{7}

The projection of \vec{b} on \vec{a} is \frac{15}{7}.

Answered by krushiteja27
3

Answer:

15/27

Step-by-step explanation:

15/27. .jdjdjdjdjchhdudjdndnsnsmsk

Similar questions