Physics, asked by gvaibhav470, 8 months ago

If vector A = 3 i + j + 2 k and vector B = 2 i - 2 j + 4 k then find ⏐A x B⏐

Answers

Answered by dp14380dinesh
2

\huge{\mathfrak{\underline{\red{Answer!}}}}

Answer:

ans of 1=-(ans of 2)

I use the determination process for cross product.

and Happy janmastami ☺️

Attachments:
Answered by SarcasticL0ve
22

{\underline{\underline{\bf{\pink{GivEn:-}}}}}

  • \sf \overrightarrow{a} = 3\hat{i} + \hat{j} + 2 \hat{k}

  • \sf \overrightarrow{b} = 2\hat{i} - 2\hat{j} + 4 \hat{k}

{\underline{\underline{\bf{\red{To\;find:-}}}}}

  • \sf \overrightarrow{a} \times \overrightarrow{b}

{\underline{\underline{\bf{\blue{SoluTion:-}}}}}

As we know that if,

\sf \overrightarrow{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}

\sf \overrightarrow{b} = \lambda \hat{i} - \mu \hat{j} + \delta \hat{k}

So, \sf \overrightarrow{a} \times \overrightarrow{b} is,

\left|\begin{array}{c c c} \hat{i} & \hat{j} & \hat{k} \\ \alpha & \beta & \gamma \\ \lambda & \mu & \delta \end{array} \right|

therefore,

\dashrightarrow\sf \overrightarrow{a} \times \overrightarrow{b} = \hat{i} (\beta  \delta - \gamma \mu) - \hat{j} (\alpha \delta - \gamma \lambda) + \hat{k}(\alpha \mu - \beta \lambda)

━━━━━━━━━━━━━━━

Here,

  • \sf \overrightarrow{a} = 3\hat{i} + \hat{j} + 2 \hat{k}

  • \sf \overrightarrow{b} = 2\hat{i} - 2\hat{j} + 4 \hat{k}

☯ Therefore, \sf \overrightarrow{a} \times \overrightarrow{b} is,

\left|\begin{array}{c c c} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 1 \\ 3 & 2 & 4 \end{array} \right|

\dashrightarrow\sf \hat{i} (3 \times 4 - 1 \times 2) - \hat{j} (2 \times 4 - 1 \times 3) + \hat{k}(2 \times 2 - 3 \times 3)

\dashrightarrow\sf \hat{i} (12 - 2) - \hat{j} (8 - 3) + \hat{k}(4 - 9)

\dashrightarrow\sf \purple{ 10 \hat{i} - 5 \hat{j} - 5 \hat{k}}

Similarly, we can say that,

\sf (\overrightarrow{a} \times \overrightarrow{b}) =  - ( \overrightarrow{a} \times \overrightarrow{b})

━━━━━━━━━━━━━━━

Similar questions