Physics, asked by sharmagiana0, 1 month ago

If vector A = i +2 j + k, vector B =2i +3k and vector C = 2i +4k , then what is the
magnitude of vector A + B -C ?, (I ,j, and k are unit vectors)

Answers

Answered by SparklingBoy
317

Given :-

 \vec{ \text A} =  \hat\text i + 2 \hat\text j + \hat \text k \\

\vec{\text B} =  2\hat\text i +  3\hat \text k \\

\vec{ \text C} = 2 \hat\text i  +4 \hat \text k \\

To Find :-

 \text{Magnitude of} \: \vec{\text A} + \vec{\text B} - \vec{\text C}

Solution :-

★ We Know magnitude of a vector \vec{\text  P} = \text x\hat\text i + \text y \hat\text j +\text z \hat \text k \\ is Given by The Formula :

  \pink{\underbrace{\large\bf |P|  =  \sqrt{ { x}^{2} +  { y}^{2}  +  {z}^{2}  }} } \\

Now,

Calculating Value of \bf{\vec{A} + \vec{B} - \vec{C}}

\vec{ \text A} + \vec{\text B} - \vec{\text C} \\

= \hat\text i + 2 \hat\text j + \hat \text k   + 2\hat\text i +  3\hat \text k    - (2\hat\text i  +4 \hat \text k)  \\

 =3 \hat\text i  + 2 \hat{ \text j}+   \cancel{4\hat \text k   } - 2\hat\text i   -  \cancel{4 \hat \text k}  \\

  \large= \hat{\text i}  + 2 \hat{\text j}

Hence,

\large\underline{\pink{\underline{\frak{\pmb{ \vec{ \text{A}} + \vec{B} - \vec{ C} =  \hat{i} + 2 \hat{j} }}}}}

❒ Calculating Magnitude of \bf{\vec{A} + \vec{B} - \vec{C}}\\

 \sf |\vec{A} + \vec{B} - \vec{C}|  =  \sqrt{ {1}^{2} +  {2}^{2}  }  \\

 =  \sqrt{1 + 4}  \\

 =  \sqrt{5}  \\

Hence,

\Large\underline{\pink{\underline{\frak{\pmb{|\vec{\text A} + \vec{B} - \vec{C}|  =  \sqrt{5} }}}}}


Anonymous: Perfect!
Answered by Itzheartcracer
126

Given :-

If vector  A = i +2 j + k, vector B =2i +3k and vector C = 2i +4k

To Find :-

Magnitude of vector A + B -C

Solution :-

\sf A + B - C

We have

A = i + 2j + k

B = 2i + 3k

C = 2i + 4k

(i + 2j + k) + (2i + 3k) - (2i + 4k)

i + 2j + k + 2i + 3k - 2i - 4k

i + 2i - 2i + k + 3k - 4k + 2j

3i - 2i + 4k - 4k + 2j

i + 2j

Now

Magnitude = √(i² + 2j²)

Magnitude = √(1² + 2²)

Magnitude = √(1 + 4)

Magnitude = √(5)

Magnitude = √5

{\frak{\pink{\underline{Hence,\;Magnitude\;is\;\sqrt{5}\;}}}}

Similar questions