Physics, asked by drsagar1340, 1 year ago

If vector a= x1i +y1j & vector b= x2i + y2j. Find the condition that would make vector a & vector b parallel to each other

Answers

Answered by Swarup1998
16

Vector Analysis

Formula:

If \mathrm{\vec{a}} and \mathrm{\vec{b}} are two parallel vectors, then

\quad\quad\mathrm{\vec{a}\times\vec{b}=\vec{0}}.

\quad\quad \mathrm{\hat{i}\times\hat{i}=\vec{0}}

\quad\quad \mathrm{\hat{j}\times\hat{j}=\vec{0}}

\quad\quad \mathrm{\hat{i}\times\hat{j}=-\hat{j}\times\hat{i}}

Solution:

The given vectors are

\quad\quad \mathrm{\vec{a}=x_{1}\hat{i}+y_{1}\hat{j}}

\quad\quad \mathrm{\vec{b}=x_{2}\hat{i}+y_{2}\hat{j}}

Since \mathrm{\vec{a}} and \mathrm{\vec{b}} are parallel vectors,

\quad \mathrm{\vec{a}\times\vec{b}=\vec{0}}

\Rightarrow \mathrm{(x_{1}\hat{i}+y_{1}\hat{j})\times (x_{2}\hat{i}+y_{2}\hat{j})=\vec{0}}

\Rightarrow \mathrm{x_{1}x_{2}(\hat{i}\times\hat{i})+x_{1}y_{2}(\hat{i}\times\hat{j})}\\ \quad \mathrm{+y_{1}x_{2}(\hat{j}\times\hat{i})+y_{1}y_{2}(\hat{j}\times\hat{j})=\vec{0}}

\Rightarrow \mathrm{x_{1}y_{2}(\hat{i}\times\hat{j})+y_{1}x_{2}(\hat{j}\times\hat{i})=\vec{0}}

\Rightarrow \mathrm{x_{1}y_{2}(\hat{i}\times\hat{j})-x_{2}y_{1}(\hat{i}\times\hat{j})=\vec{0}}

\Rightarrow \mathrm{(x_{1}y_{2}-x_{2}y_{1})(\hat{i}\times\hat{j})=\vec{0}}

\Rightarrow \boxed{\color{blue}{\mathrm{x_{1}y_{2}-x_{2}y_{1}=0}}}

This is the required condition.

Similar questions