Science, asked by Pratyush091205, 10 months ago

If vectors 2i^+2j^-2k^,5i^+yi^+k^ are perpendicular to each other. The value of 'y'is

Answers

Answered by Anonymous
14

\huge\boxed{\fcolorbox{cyan}{grey}{Solution:-}}.

Let, Given vectors are ,

â= 2î+2j-2k .

b=5î+yj+k.

They are perpendicular .,

so, by conditions.

\huge\boxed{\fcolorbox{cyan}{grey}{</u></em></strong><strong><em><u>â</u></em></strong><strong><em><u>.</u></em></strong><strong><em><u>b</u></em></strong><strong><em><u>=</u></em></strong><strong><em><u>0</u></em></strong><strong><em><u>:-}}.

Now,.

=> (2î+2j-2k).(5î+yj+k)=0.

=>10+2y-2=0.

=>2y= -8.

=>y= -4.

Hopes its helps u.

\huge\boxed{\fcolorbox{cyan}{grey}{</u></em></strong><strong><em><u>F</u></em></strong><strong><em><u>o</u></em></strong><strong><em><u>l</u></em></strong><strong><em><u>l</u></em></strong><strong><em><u>o</u></em></strong><strong><em><u>w</u></em></strong><strong><em><u> </u></em></strong><strong><em><u>m</u></em></strong><strong><em><u>e</u></em></strong><strong><em><u>.</u></em></strong><strong><em><u>:-}}

Answered by Anonymous
4

Answer:

\large\bold\red{y=-4}

Explanation:

Given,

Two vectors,

Let's assume that,

  • \bold{\vec{a}=2\hat{i}+2\hat{j}-2\hat{k}}

And,

  • \bold{\vec{b}=5\hat{i}+y\hat{j}+\hat{k}}

Also,

It's given that,

  • Both vectors are perpendicular to each other.

Now,

We know that,

  • Dot Product of Perpendicular vectors is zero.

Therefore,

We get,

 =  &gt; \vec{a} \cdot\vec{b} = 0 \\  \\  =  &gt; (2\hat{i}+2\hat{j}-2\hat{k}) \cdot(5\hat{i}+y\hat{j}+\hat{k}) = 0

But,

We know that,

  • Dot product of Unit vector with itself is 1 and with another unit vector is 0.

Therefore,

We get,

 =  &gt; 10 + 2y - 2 = 0 \\  \\  =  &gt; 2y + 8 = 0 \\  \\  =  &gt; 2y =  - 8 \\  \\  =  &gt; y =  \frac{ - 8}{2}  \\  \\  =  &gt; y =  - 4

Hence,

  • \large\bold{y=-4}
Similar questions