if volume of cuboid dimensions a
and S is surface area then prove
Answers
Answered by
0
Step-by-step explanation:
Dimensions of a cuboid:
Length = a units,
Breadth = b units,
Height = h units
Volume \: of \: the \: cuboid\\(V) = abc\:--(1)
Surface \: Area \\(S)=2(ab+bc+ca)\:---(2)
Now,\\RHS=\frac{2}{S}[\frac{1}{a}+\frac{1}{b}+\frac{1}{c}]
=\frac{2}{S}[\frac{bc+ac+ab}{abc}]
=\frac{2}{2(ab+bc+ca)}[\frac{(ab+bc+ca)}{abc}]
=\frac{1}{abc}
=\frac{1}{V}\\=LHS
Therefore,
\frac{2}{S}[\frac{1}{a}+\frac{1}{b}+\frac{1}{c}]=\frac{1}{V}
•••♪
Similar questions