Math, asked by omsonar3255, 11 months ago

if volume of cuboid dimensions a
a \times b \times c
and S is surface area then prove
 \frac{1}{ v}  =  \frac{2}{s}  ( \frac{1}{a }  +  \frac{1}{b}  +   \frac{1}{c} )

Answers

Answered by mayankjoshi640
0

Step-by-step explanation:

Dimensions of a cuboid:

Length = a units,

Breadth = b units,

Height = h units

Volume \: of \: the \: cuboid\\(V) = abc\:--(1)

Surface \: Area \\(S)=2(ab+bc+ca)\:---(2)

Now,\\RHS=\frac{2}{S}[\frac{1}{a}+\frac{1}{b}+\frac{1}{c}]

=\frac{2}{S}[\frac{bc+ac+ab}{abc}]

=\frac{2}{2(ab+bc+ca)}[\frac{(ab+bc+ca)}{abc}]

=\frac{1}{abc}

=\frac{1}{V}\\=LHS

Therefore,

\frac{2}{S}[\frac{1}{a}+\frac{1}{b}+\frac{1}{c}]=\frac{1}{V}

•••♪

Similar questions