if w is a complex cube root of unity such that x-a+b,y=a+aw² and z-aw²+be,a,b€R
then prove that x+y+z=0
Answers
Answered by
8
Answer:
I am assuming w=ω=1–√3
In that case we are expected to prove
if x=a+b,y=aω+bω2,z=aω2+bω
then x3+b3+z3=3(a3+b3)
where we know
1+ω+ω2=0
a3+b3=3(a+b)(a2−ab+b2)
if a+b+c=0 then a3+b3+c3=3abc
now,
x+y+z=a+b+(aω+bω2)+aω2+bω
⇒x+y+z=(a+b)(1+ω+ω2)=0
and we know if x+y+z=0 , then x3+y3+z3=3xyz
⇒x3+y3+z3= 3(a+b)(aω+bω2)(aω2+bω)
⇒x3+y3+z3=3ω2(a+b)(a+bω)(aω+b)
⇒x3+y3+z3= 3ω2(a+b)(a2ω+ab(1+ω2)+b2ω)
⇒x3+y3+z3=3ω2(a+b)(a2ω−abω+b2)
⇒x3+y3+z3=3ω3(a+b)(a2−ab+b2)
⇒x3+y3+z3=3(a3+b3)
Similar questions