Math, asked by npkumavat2255, 4 months ago

If w is a complex cube root of unity then show that (1-w) (1-w2 ) (1-w4) ( 1-w5) =9​

Answers

Answered by Anonymous
10

Step-by-step explanation:

(1 - w)(1 - w ^{2} )(1 - w ^{4} )(1 - w ^{5} ) \\  \\  = (1 -  {w}^{2}  - w +  {w}^{3} )(1 -  {w}^{5}  -  {w}^{4}  +  {w}^{9} ) \\  \\  = (1 -  {w}^{2}  - w + 1)(1 -  {w}^{2}  - w + 1)  \:  \:  \:  \:  \: ( {w}^{3} = 1. \:  \:  \:  {w}^{9}  =  ({w}^{3}) ^{3}  = (1) ^{3}  = 1  )\\  \\= (2 -  {w}^{2}  - w)(2 - w -  {w}^{2} )  \\  \\  = (2 -( {w}^{2}  + w))(2 - (w +  {w}^{2} )) \\  \\  =( 2 - ( - 1))(2 - ( - 1)) \\  \\  = (2 + 1)(2 + 1) \\  \\  = 3 \times 3 \\  \\  = 9 \:  \:  \: (proved) \\  \\  \\ formula \:  \:  \:  -  \:  \:  {w}^{3}  = 1 \\  \\ 1 + w +  {w}^{2}  = 0 \\  =  > w +  {w}^{2}  =  - 1 \\  \\

Similar questions