Math, asked by hatiskarrhishi, 8 months ago

if w is a cube root of unity then a root of the following equation
|x+1 w w^2 |
|w x+w 1 | = 0 is?
|w^2 1 x+w|​

Attachments:

Answers

Answered by pulakmath007
4

SOLUTION

TO CHOOSE THE CORRECT OPTION

If ω is a cube root of unity then a root of the following equation is

\displaystyle\begin{vmatrix}  \:  \: x + 1&  \omega &  {\omega}^{2}  \\  \\  \omega & x +  {\omega}^{2}  &  1 \\  \\  {\omega}^{2}  & 1 &  x + \omega  \:  \: \end{vmatrix} = 0

(a) x = 1 (b) x = ω (c) x = ω² (d) x = 0

EVALUATION

Here the given equation is

\displaystyle\begin{vmatrix}  \:  \: x + 1&  \omega &  {\omega}^{2}  \\  \\  \omega & x +  {\omega}^{2}  &  1 \\  \\  {\omega}^{2}  & 1 &  x + \omega  \:  \: \end{vmatrix} = 0

We simplify it as below

\displaystyle\begin{vmatrix}  \:  \: x + 1&  \omega &  {\omega}^{2}  \\  \\  \omega & x +  {\omega}^{2}  &  1 \\  \\  {\omega}^{2}  & 1 &  x + \omega  \:  \: \end{vmatrix} = 0

 \displaystyle \sf{ \implies \: \begin{vmatrix}  \:  \: x + 1 +\omega  + {\omega}^{2} &  \omega  + x + 1  + {\omega}^{2}  &  {\omega}^{2}  + x + 1 +\omega   \\  \\  \omega & x +  {\omega}^{2}  &  1 \\  \\  {\omega}^{2}  & 1 &  x + \omega  \:  \: \end{vmatrix}} = 0 \:  \: ( \: R_1' = R_1 + R_2 + R_3)

  \displaystyle \sf{\implies \:\begin{vmatrix}  \:  \: x + 1 +\omega  + {\omega}^{2} &  x + 1 +\omega  + {\omega}^{2}  &  x + 1 +\omega  + {\omega}^{2}   \\  \\  \omega & x +  {\omega}^{2}  &  1 \\  \\  {\omega}^{2}  & 1 &  x + \omega  \:  \: \end{vmatrix}}  = 0

  \displaystyle \sf{\implies \:\begin{vmatrix}  \:  \: x + 0 &  x + 0  &  x + 0  \\  \\  \omega & x +  {\omega}^{2}  &  1 \\  \\  {\omega}^{2}  & 1 &  x + \omega  \:  \: \end{vmatrix}} = 0 \:  \:   \: ( \because \: 1 +\omega  + {\omega}^{2} = 0)

\displaystyle \sf{\implies \:\begin{vmatrix}  \:  \: x  &  x   &  x   \\  \\  \omega & x +  {\omega}^{2}  &  1 \\  \\  {\omega}^{2}  & 1 &  x + \omega  \:  \: \end{vmatrix}} = 0

\displaystyle \sf{\implies  \: x\:\begin{vmatrix}  \:  \: 1 &  1   &  1   \\  \\  \omega & x +  {\omega}^{2}  &  1 \\  \\  {\omega}^{2}  & 1 &  x + \omega  \:  \: \end{vmatrix}} = 0

\displaystyle \sf{\implies  \: x = 0 \:}

FINAL ANSWER

Hence the correct option is (d) x = 0

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. A is a square matrix of order 3 having a row of zeros, then the determinant of A is 

https://brainly.in/question/28455441

2. If [1 2 3] B = [34], then the order of the matrix B is

https://brainly.in/question/9030091

Similar questions