If w is a non-real cube root of unity, then the value of
(3+w + 3w²)+ is
(a)16
(b)16 w
(c)16 w²
(d) –16 w
Answers
Answered by
0
Step-by-step explanation:
We know,
ω3=1
1+ω+ω2=0
Now,
(3+5ω+3ω2)2+(3+3ω+5ω2)2
⇒ −3ω+5ω)2+(−3w2+5ω2)2 [ Since, 1+ω2=−ω ]
⇒ (2ω)2+(2ω2)2
⇒ 4ω2+4ω4
⇒ 4(ω+ω2) [ ω4=ω.ω3=ω ]
⇒ 4(−1) [ ω+ω2=−1 ]
⇒ −4
∴ (3+5ω+3ω2)2+(3+3ω+5ω2)2=−4
mark as brilliant
Similar questions