if w is imaginary cube root of 1, then show that (a+bw+cw^2) is a factor of ∆= 3×3 matrix
| a b c|
|b c a |
|c a b |
please answer in detailed and understandable form. please help it's urgent.
Answers
TO PROVE
PROOF
Here neither of the two rows nor of the two columns are equal
So the determinant value is non zero
Now
Hence proved
━━━━━━━━━━━━━━━━
LEARN MORE FROM BRAINLY
For a square matrix A and a non-singular
matrix B of the same order, the value of
det(B inverse AB)
https://brainly.in/question/23783093
Step-by-step explanation:
\displaystyle\huge\red{\underline{\underline{Solution}}}
Solution
TO PROVE
\sf{ a + b \omega + c { \omega}^{2} \: } \: is \: a \: factor \: of \:a+bω+cω
2
isafactorof
\begin{gathered}\displaystyle\begin{vmatrix} a & b & c\\ b & c & a \\ c & a & b \end{vmatrix}\end{gathered}
∣
∣
∣
∣
∣
∣
∣
a
b
c
b
c
a
c
a
b
∣
∣
∣
∣
∣
∣
∣
PROOF
Here neither of the two rows nor of the two columns are equal
So the determinant value is non zero
\sf{Since \: \omega \: is \: a \: cube \: root \: of \: unity \: so} \: \: { \omega}^{3} = 1Sinceωisacuberootofunitysoω
3
=1
Now
\begin{gathered}\displaystyle\begin{vmatrix} a & b & c\\ b & c & a \\ c & a & b \end{vmatrix}\end{gathered}
∣
∣
∣
∣
∣
∣
∣
a
b
c
b
c
a
c
a
b
∣
∣
∣
∣
∣
∣
∣
\begin{gathered}= \sf{ \frac{1}{ { \omega}^{2}}. \frac{1}{ \omega }\: \displaystyle\begin{vmatrix} a & b \omega & c{ \omega}^{2}\\ b & c \omega & a{ \omega}^{2} \\ c & a \omega & b{ \omega}^{2} \end{vmatrix} }\end{gathered}
=
ω
2
1
.
ω
1
∣
∣
∣
∣
∣
∣
∣
a
b
c
bω
cω
aω
cω
2
aω
2
bω
2
∣
∣
∣
∣
∣
∣
∣
\begin{gathered}= \displaystyle\begin{vmatrix} a & b \omega & c{ \omega}^{2}\\ b & c \omega & a{ \omega}^{2} \\ c & a \omega & b{ \omega}^{2} \end{vmatrix}\end{gathered}
=
∣
∣
∣
∣
∣
∣
∣
a
b
c
bω
cω
aω
cω
2
aω
2
bω
2
∣
∣
∣
∣
∣
∣
∣
\begin{gathered}= \displaystyle\begin{vmatrix} a + b \omega + c{ \omega}^{2} & b \omega & c{ \omega}^{2}\\ b + c \omega + a{ \omega}^{2} & c \omega & a{ \omega}^{2} \\ c + a \omega + b{ \omega}^{2} & a \omega & b{ \omega}^{2} \end{vmatrix} \: \: \: ( \: C_1 '= C_1+ C_2 +C_3 \: )\end{gathered}
=
∣
∣
∣
∣
∣
∣
∣
a+bω+cω
2
b+cω+aω
2
c+aω+bω
2
bω
cω
aω
cω
2
aω
2
bω
2
∣
∣
∣
∣
∣
∣
∣
(C
1
′
=C
1
+C
2
+C
3
)
\begin{gathered}= \displaystyle\begin{vmatrix} a + b \omega + c{ \omega}^{2} & b \omega & c{ \omega}^{2}\\ b{ \omega}^{3} + c { \omega}^{4} + a{ \omega}^{2} & c \omega & a{ \omega}^{2} \\ c { \omega}^{3} + a \omega + b{ \omega}^{2} & a \omega & b{ \omega}^{2} \end{vmatrix} \: \: \: ( \: \because \: { \omega}^{3} = 1 \: \: )\end{gathered}
=
∣
∣
∣
∣
∣
∣
∣
a+bω+cω
2
bω
3
+cω
4
+aω
2
cω
3
+aω+bω
2
bω
cω
aω
cω
2
aω
2
bω
2
∣
∣
∣
∣
∣
∣
∣
(∵ω
3
=1)
\begin{gathered}= \displaystyle\begin{vmatrix} a + b \omega + c{ \omega}^{2} & b \omega & c{ \omega}^{2}\\ a + b \omega + c{ \omega}^{2} & c \omega & a{ \omega}^{2} \\ a + b \omega + c{ \omega}^{2} & a \omega & b{ \omega}^{2} \end{vmatrix}\end{gathered}
=
∣
∣
∣
∣
∣
∣
∣
a+bω+cω
2
a+bω+cω
2
a+bω+cω
2
bω
cω
aω
cω
2
aω
2
bω
2
∣
∣
∣
∣
∣
∣
∣
\sf{taking \: common \: \: \omega \: \: and \: \: { \omega}^{2} \: from \: 3rd \: and \: 2nd \: row \: respectively}takingcommonωandω
2
from3rdand2ndrowrespectively
\begin{gathered}= ( \: a + b \omega + c{ \omega}^{2} \: ) \displaystyle\begin{vmatrix} 1 & b \omega & c{ \omega}^{2}\\ 1 & c \omega & a{ \omega}^{2} \\ 1 & a \omega & b{ \omega}^{2} \end{vmatrix}\end{gathered}
=(a+bω+cω
2
)
∣
∣
∣
∣
∣
∣
∣
1
1
1
bω
cω
aω
cω
2
aω
2
bω
2
∣
∣
∣
∣
∣
∣
∣
\sf{This \: shows \: that \: ( a + b \omega + c{ \omega}^{2} ) \: is \: factor \: of}Thisshowsthat(a+bω+cω
2
)isfactorof
\begin{gathered}\displaystyle\begin{vmatrix} a & b & c\\ b & c & a \\ c & a & b \end{vmatrix}\end{gathered}
∣
∣
∣
∣
∣
∣
∣
a
b
c
b
c
a
c
a
b
∣
∣
∣
∣
∣
∣
∣
Hence proved
━━━━━━━━━━━━━━━━
LEARN MORE FROM BRAINLY
For a square matrix A and a non-singular
matrix B of the same order, the value of
det(B inverse AB)
https://brainly.in/question/23783093