Math, asked by royabhisek2001, 6 months ago

if w is imaginary cube root of 1, then show that (a+bw+cw^2) is a factor of ∆= 3×3 matrix
| a b c|
|b c a |
|c a b |

please answer in detailed and understandable form. please help it's urgent.

Answers

Answered by pulakmath007
15

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO PROVE

 \sf{ a + b \omega + c { \omega}^{2} \: } \: is \: a \: factor \: of \:

\displaystyle\begin{vmatrix} a & b & c\\ b & c &  a \\ c & a &  b \end{vmatrix}

PROOF

Here neither of the two rows nor of the two columns are equal

So the determinant value is non zero

 \sf{Since \:  \omega \:  is \:  a \:  cube \:  root \:  of \:  unity  \: so} \:  \:  { \omega}^{3}   = 1

Now

\displaystyle\begin{vmatrix} a & b & c\\ b & c &  a \\ c & a &  b \end{vmatrix}

 =  \sf{  \frac{1}{ { \omega}^{2}}.   \frac{1}{ \omega }\:  \displaystyle\begin{vmatrix} a & b \omega & c{ \omega}^{2}\\ b & c \omega &  a{ \omega}^{2} \\ c & a \omega &  b{ \omega}^{2} \end{vmatrix} }

 =   \displaystyle\begin{vmatrix} a & b \omega & c{ \omega}^{2}\\ b & c \omega &  a{ \omega}^{2} \\ c & a \omega &  b{ \omega}^{2} \end{vmatrix}

 =   \displaystyle\begin{vmatrix} a + b \omega +  c{ \omega}^{2} & b \omega & c{ \omega}^{2}\\ b  +  c \omega  +   a{ \omega}^{2} & c \omega &  a{ \omega}^{2} \\ c  + a \omega  +   b{ \omega}^{2} & a \omega &  b{ \omega}^{2} \end{vmatrix}  \:  \:  \: ( \: C_1 '= C_1+ C_2 +C_3 \: )

 =   \displaystyle\begin{vmatrix} a + b \omega +  c{ \omega}^{2} & b \omega & c{ \omega}^{2}\\ b{ \omega}^{3}  +  c { \omega}^{4}  +   a{ \omega}^{2} & c \omega &  a{ \omega}^{2} \\ c { \omega}^{3} + a \omega  +   b{ \omega}^{2} & a \omega &  b{ \omega}^{2} \end{vmatrix}  \:  \:  \: (  \: \because \: { \omega}^{3} = 1 \:  \: )

 =   \displaystyle\begin{vmatrix} a + b \omega +  c{ \omega}^{2} & b \omega & c{ \omega}^{2}\\ a + b \omega +  c{ \omega}^{2} & c \omega &  a{ \omega}^{2} \\ a + b \omega +  c{ \omega}^{2} & a \omega &  b{ \omega}^{2} \end{vmatrix}

 \sf{taking \: common  \:  \:  \omega \:  \:  and \:   \: { \omega}^{2} \: from \: 3rd \: and \: 2nd \: row \: respectively}

 = ( \:  a + b \omega +  c{ \omega}^{2} \: ) \displaystyle\begin{vmatrix} 1 & b \omega & c{ \omega}^{2}\\ 1 & c \omega &  a{ \omega}^{2} \\ 1 & a \omega &  b{ \omega}^{2} \end{vmatrix}

 \sf{This  \: shows \:  that  \: ( a + b \omega +  c{ \omega}^{2}  ) \: is \: factor \: of}

\displaystyle\begin{vmatrix} a & b & c\\ b & c &  a \\ c & a &  b \end{vmatrix}

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

For a square matrix A and a non-singular

matrix B of the same order, the value of

det(B inverse AB)

https://brainly.in/question/23783093

Answered by Pallakavya
0

Step-by-step explanation:

\displaystyle\huge\red{\underline{\underline{Solution}}}

Solution

TO PROVE

\sf{ a + b \omega + c { \omega}^{2} \: } \: is \: a \: factor \: of \:a+bω+cω

2

isafactorof

\begin{gathered}\displaystyle\begin{vmatrix} a & b & c\\ b & c & a \\ c & a & b \end{vmatrix}\end{gathered}

a

b

c

b

c

a

c

a

b

PROOF

Here neither of the two rows nor of the two columns are equal

So the determinant value is non zero

\sf{Since \: \omega \: is \: a \: cube \: root \: of \: unity \: so} \: \: { \omega}^{3} = 1Sinceωisacuberootofunitysoω

3

=1

Now

\begin{gathered}\displaystyle\begin{vmatrix} a & b & c\\ b & c & a \\ c & a & b \end{vmatrix}\end{gathered}

a

b

c

b

c

a

c

a

b

\begin{gathered}= \sf{ \frac{1}{ { \omega}^{2}}. \frac{1}{ \omega }\: \displaystyle\begin{vmatrix} a & b \omega & c{ \omega}^{2}\\ b & c \omega & a{ \omega}^{2} \\ c & a \omega & b{ \omega}^{2} \end{vmatrix} }\end{gathered}

=

ω

2

1

.

ω

1

a

b

c

2

2

2

\begin{gathered}= \displaystyle\begin{vmatrix} a & b \omega & c{ \omega}^{2}\\ b & c \omega & a{ \omega}^{2} \\ c & a \omega & b{ \omega}^{2} \end{vmatrix}\end{gathered}

=

a

b

c

2

2

2

\begin{gathered}= \displaystyle\begin{vmatrix} a + b \omega + c{ \omega}^{2} & b \omega & c{ \omega}^{2}\\ b + c \omega + a{ \omega}^{2} & c \omega & a{ \omega}^{2} \\ c + a \omega + b{ \omega}^{2} & a \omega & b{ \omega}^{2} \end{vmatrix} \: \: \: ( \: C_1 '= C_1+ C_2 +C_3 \: )\end{gathered}

=

a+bω+cω

2

b+cω+aω

2

c+aω+bω

2

2

2

2

(C

1

=C

1

+C

2

+C

3

)

\begin{gathered}= \displaystyle\begin{vmatrix} a + b \omega + c{ \omega}^{2} & b \omega & c{ \omega}^{2}\\ b{ \omega}^{3} + c { \omega}^{4} + a{ \omega}^{2} & c \omega & a{ \omega}^{2} \\ c { \omega}^{3} + a \omega + b{ \omega}^{2} & a \omega & b{ \omega}^{2} \end{vmatrix} \: \: \: ( \: \because \: { \omega}^{3} = 1 \: \: )\end{gathered}

=

a+bω+cω

2

3

+cω

4

+aω

2

3

+aω+bω

2

2

2

2

(∵ω

3

=1)

\begin{gathered}= \displaystyle\begin{vmatrix} a + b \omega + c{ \omega}^{2} & b \omega & c{ \omega}^{2}\\ a + b \omega + c{ \omega}^{2} & c \omega & a{ \omega}^{2} \\ a + b \omega + c{ \omega}^{2} & a \omega & b{ \omega}^{2} \end{vmatrix}\end{gathered}

=

a+bω+cω

2

a+bω+cω

2

a+bω+cω

2

2

2

2

\sf{taking \: common \: \: \omega \: \: and \: \: { \omega}^{2} \: from \: 3rd \: and \: 2nd \: row \: respectively}takingcommonωandω

2

from3rdand2ndrowrespectively

\begin{gathered}= ( \: a + b \omega + c{ \omega}^{2} \: ) \displaystyle\begin{vmatrix} 1 & b \omega & c{ \omega}^{2}\\ 1 & c \omega & a{ \omega}^{2} \\ 1 & a \omega & b{ \omega}^{2} \end{vmatrix}\end{gathered}

=(a+bω+cω

2

)

1

1

1

2

2

2

\sf{This \: shows \: that \: ( a + b \omega + c{ \omega}^{2} ) \: is \: factor \: of}Thisshowsthat(a+bω+cω

2

)isfactorof

\begin{gathered}\displaystyle\begin{vmatrix} a & b & c\\ b & c & a \\ c & a & b \end{vmatrix}\end{gathered}

a

b

c

b

c

a

c

a

b

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

For a square matrix A and a non-singular

matrix B of the same order, the value of

det(B inverse AB)

https://brainly.in/question/23783093

Similar questions