Math, asked by Anonymous, 10 months ago

If we add 1 to the numerator and subtract 1 from the denominator, a fraction reduces to 1. It becomes 1/2 if we only add 1 to the denominator. What is the fraction?​

Answers

Answered by Anonymous
24

Given :

  • If we add 1 to the numerator and subtract 1 from the denominator, a fraction reduces to 1.
  • It becomes 1/2 if we only add 1 to the denominator.

To Find :

  • The Fraction.

Solution :

Let the numerator of the fraction be x.

Let the denominator of the fraction be y.

Fraction = \bold{\dfrac{x}{y}}

Case 1 :

If 1 is added to numerator and 1 is subtracted from denominator the fraction becomes 1.

Numerator = (x + 1)

Denominator = (y - 1)

Equation :

\sf{\longrightarrow{\dfrac{x+1}{y-1}=1}}

\sf{\longrightarrow{x+1=1(y-1)}}

\sf{\longrightarrow{x+1=y-1}}

\sf{\longrightarrow{x=y-1-1}}

\sf{\longrightarrow{x=y-2\:\:\:\:(1)}}

Case 2 :

When 1 is added to the denominator the fraction becomes 1/2.

Numerator = x

Denominator = (y + 1)

Equation :

\sf{\longrightarrow{\dfrac{x}{y+1}=\dfrac{1}{2}}}

\sf{\longrightarrow{2x=1(y+1)}}

\sf{\longrightarrow{2x=y+1}}

\sf{\longrightarrow{2x-y=1}}

\sf{\longrightarrow{2(y-2) -y=1}}

\bf{\big[From\:equation\:(1)\:x\:=\:y-2\:\big]}

\sf{\longrightarrow{2y-4-y=1}}

\sf{\longrightarrow{2y-y=1+4}}

\sf{\longrightarrow{y=5}}

Substitute, y = 5 in equation (1),

\sf{\longrightarrow{x=y-2}}

\sf{\longrightarrow{x=5-2}}

\sf{\longrightarrow{x=3}}

\large{\boxed{\bold{Numerator\:of\:fraction\:=\:x\:=\:3}}}

\large{\boxed{\bold{ Denominator \:of\:fraction\:=\:y\:=\:5}}}

\large{\boxed{\bold{Fraction\:=\dfrac{x}{y}=\dfrac{3}{5}}}}

Answered by vikram991
40

Given,

  • If we add 1 to the numerator and subtract 1 from the denominator then the fraction reduce to 1.
  • If we add 1 to the denominator then it becomes 1/2.

To Find,

  • The Fraction

Solution,

⇒Suppose the numerator be a

And, Suppose the denominator be b

According to the First Condition :-

\implies \bold{a + 1 = b - 1}

\implies \boxed{\bold{b = a + 2}}.....1)

According to the Second Condition :-

\implies \bold{\dfrac{a}{b + 1} = \dfrac{1}{2}}

\implies \bold{2a  = b + 1}

Now Put value of b From Equation First :-

\implies \bold{2a = a + 2 + 1}

\implies \bold{2a - a = 3}

\implies \boxed{\bold{ a = 3}}

Now Put value of a in Equation First :-

\implies \bold{b = a + 2}

\implies \bold{b = 3 + 2}

\implies \boxed{\bold{ b = 5}}

Therefore ,

\boxed{\bf{\purple{The \ Fraction = \dfrac{3}{5}}}}

\rule{200}1

Similar questions