Math, asked by VijayaLaxmiMehra1, 1 year ago

If we add 1 to the numerator and subtract 1 from the denominator, a fraction becomes 1. It also becomes 1/2 if we only add 1 to the denominator. What is the fraction?

➡Class 10th

➡No Spams please otherwise reported.

➡Content Quality Solution needed.

Answers

Answered by sushant2505
5
HEYA !

Let the numerator be x and the denominator be y

Then the fraction is x / y

Now,

According to the question,

 \frac{x + 1}{y - 1}  = 1 \\  \\  \Rightarrow \:  \:  \:  x + 1 = y - 1 \\  \\  \Rightarrow \:  \:  \: x   = y - 1 - 1 \\  \\ \Rightarrow \:  \:  \: x  =  y   - 2 \:  \:  \:  \:  \:   \:  \:  \: \: .....(1) \\  \\  \text{And} \\  \\  \frac{x}{y + 1}  =  \frac{1}{2}  \\  \\ \Rightarrow \:  \:  \:2x = y + 1 \\  \\ \Rightarrow \:  \:  \:2(y - 2) = y + 1 \:  \:  \:  \:  \:  \:  \:   \{\text{from  (1)} \} \\  \\ \Rightarrow \:  \:  \:2y - 4  = y + 1 \\  \\ \Rightarrow \:  \:  \:2y  - y = 1 + 4 \\ \\  \Rightarrow \:  \:  \:  \boxed{ \: y = 5 \: } \\  \\  \text{putting y = 5 in (1) we get} \\  \\ x = 5 - 2 \\  \\ \Rightarrow \:  \:  \:  \boxed{ \: x  = 3\: } \\
Fraction = x / y = 3/5

Hence,

The required fraction is 3/5

sushant2505: :-)
VijayaLaxmiMehra1: Thank you :-) for solution
sushant2505: Welcome :-)
nahdaboo09: Who reported my answer
Answered by nikky28
1
Heya mate,

___________

Let the numerator and denominator of the fraction be x and y respectively. Then the fraction is x/y

If 1 is added to the numerator and 1 is subtracted from the denominator, the fraction becomes 1 . Thus, we have

 \frac{x + 1}{y - 1}  = 1 \\  =  > x + 1 = y - 1 \\  =  > x + 1 - y + 1 = 0 \\ =  >  x - y + 2 = 0


If 1 is added to the denominator, the fraction becomes 1/2. Thus, we have

 \frac{x}{y + 1}  =  \frac{1}{2}  \\  =  > 2x = y + 1 \\  =  > 2x - y - 1 =  0


So, we have two equations

x - y + 2 = 0 \\  \\ 2x - y - 1 = 0


Here x and y are unknowns. We have to solve the above equations for x and y.

By using cross-multiplication, we have

 \frac{x}{( - 1) \times ( - 1) - ( - 1) \times 2}  =  \frac{ - y}{1 \times ( - 1) - 2 \times ( 2)}  =  \frac{1}{1  \times  ( - 1) - 2 \times ( - 1)}  \\  \\  =  >  \frac{x}{1 + 2}  =  \frac{ - y}{ - 1 - 4}  =  \frac{1}{ - 1 + 2}  \\   \\ =  >  \frac{x}{3}  =  \frac{ - y}{ - 5}  =  \frac{1}{1}   \\ \\  =  >  \frac{x}{3}  =  \frac{y}{5}  = 1 \\ \\   =  > x = 3 \:  . \:  \:  \: y = 5




Hence, the fraction is 3/5 .

____________

# nikzz

HOPE U LIKE IT

Similar questions