Math, asked by reenagrg669, 1 month ago

If we add 1 to the numerator and subtract 1 from the denominator , a fraction reduces to 1 . It becomes 1/2 if we add 1 to the denominator . what is the fraction ?​

Answers

Answered by ShírIey
189

Given: If we add 1 to the Numerator and Subtract 1 from the Denominator, the fraction reduces to 1. & it becomes ½ if we add 1 to the Denominator.

Need to find: The fraction?

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

Let's Consider that the Numerator and Denominator of the fraction be x and y respectively.

\underline{\bigstar\:\boldsymbol{According\;to\;the\; Question\; :}}⠀⠀

  • If we add 1 to the Numerator and Subtract 1 from the Denominator, the fraction reduces to 1.

:\implies\sf \Bigg(\dfrac{Numerator + 1}{Denominator - 1}\Bigg) = 1\\\\\\

:\implies\sf \Bigg(\dfrac{x + 1}{y - 1}\Bigg)= 1\\\\\\

:\implies\sf x + 1 = y -1 \\\\\\

:\implies\sf x - y = - 1 - 1\\\\\\

:\implies\sf x - y = -2\qquad\qquad\quad\sf\Bigg\lgroup eq^{n}\;(1)\Bigg\rgroup\\\\\\

Also,

  • The fraction becomes ½ if we add 1 to the Denominator.

:\implies\sf \Bigg(\dfrac{Numerator}{Denominator + 1}\Bigg) = \Bigg(\dfrac{1}{2}\Bigg)\\\\\\

:\implies\sf \Bigg(\dfrac{x}{y + 1}\Bigg) = \Bigg(\dfrac{1}{2}\Bigg)\\\\\\

:\implies\sf 2x = y + 1\\\\\\

:\implies\sf 2x - y = 1\qquad\qquad\quad\sf\Bigg\lgroup eq^{n}\;(2)\Bigg\rgroup\\\\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

\underline{\bf{\dag} \:\mathfrak{So, Using\;eq^n\;(1)\;\&\;eq^{n}\:(2)\: :}}\\\\

:\implies\sf x - y = -2\\\\\\

:\implies\sf 2x - y = 1\\\\\\

:\implies\sf \cancel{-}\;x = \cancel{-}\;3\\\\\\

:\implies\underline{\boxed{\pmb{\frak{\pink{x = 3}}}}}\;\bigstar\\\\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\bf{\dag} \:\mathfrak{Using\;eq^n\;(1)\: :}}\\\\⠀⠀⠀⠀

:\implies\sf x - y = - 2\\\\\\

:\implies\sf3 - y = -2\\\\\\

:\implies\sf 3 - y = -2\\\\\\

:\implies\sf -y = -2 - 3\\\\\\

:\implies\sf \cancel{-}\;y = \cancel{-}\;5\\\\\\

:\implies\underline{\boxed{\pmb{\frak{\pink{y = 5}}}}}\;\bigstar\\\\

Therefore,

  • Numerator of the fraction, x = 3
  • Denominator of the fraction, y = 5

\therefore{\underline{\sf{Hence,\;the\; required\; fraction\;is\;{\purple{\pmb{\sf{\dfrac{3}{5}}}}.}}}}

Answered by SparklingThunder
206

Answer:

  \sf \: \purple{ \clubs \:Given : }

  • If we add 1 to the numerator and subtract 1 from the denominator , a fraction reduces to 1 .
  • It becomes 1/2 if we add 1 to the denominator .

 \sf \purple{ \clubs \:To \:  find  : }

  • The Fraction

 \sf \purple{ \clubs \:Solution :  }

Let numerator be x and denominator be y.

Fraction =x/y

According to question

 \underline{Case  \: 1 }\\   \boxed{\frac{x + 1}{y - 1}   = 1 }\\ x + 1 = y - 1 \\ x  -  y =  - 1 - 1 \\ x - y  =   - 2 \\ x =  - 2 + y \longrightarrow(1) \\ \underline{Case  \: 2 } \\   \boxed{\frac{x}{y + 1}  =  \frac{1}{2}  }\\ 2x = y + 1 \\  \sf \: Putting \:  value  \: of  \: x \:  from  \: equation \:  (1) \\ 2( - 2 + y) = y + 1 \\  - 4 + 2y - y = 1 \\ y = 1 + 4 \\   \purple{\boxed{y = 5}} \\ \sf \: Putting \:  value  \: of  \: y \:  in  \: equation \:  (1) \\ x =  - 2 + y \\   x =  - 2 + 5 \\   \purple{\boxed{x = 3}} \\   \red{\sf \therefore \: Fraction  = \frac{x}{y}  =  \frac{3}{5} }

Similar questions