Math, asked by Lalch, 1 year ago

if we add one to the numerator and subtract I from denominator fraction reduces to one it becomes
 \frac{1}{2}
if we add l to the denominator what is fraction

Answers

Answered by Anonymous
4
Here is ur answer hope it helps....
Attachments:
Answered by aftabrazwi
6
Let the Numerator of Fraction =x
Denominator of fraction. =y

required \: fraction \: is =  \frac{x}{y}
According to lst condition

  \:  \:  \:  \:  \:  \:  = \frac{x + 1}{y - 1}  = 1 \\  \:  \:  \:  \:  \:  \:  = x  + 1 = y - y \\  \:  \:  \:  \:  \:  \:  = x - y + 2 = 0 \:  \:  \:  \:  \: (1) \\
According to the second condition
  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \frac{x}{y + 1}  =   \frac{1}{2} \\  \:  \:  \:  \:  \:  \:   \:  \:  \:  2x \:  \:  \:  \:  \:  \:  \:   =  y + 1\\ 2x - y - 1 =0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2)


Now (2)-(1) gives
2x - y - 1 = 0 \\ x - y + 2 \:  \:    =0 \\  -  \:  \:  \:  +  \:  \:  \:  \:  \:  \:  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x - 3 = 0 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x = 3
substiutue the value of x in (2) we get
2 \times 3 - y - 1 = 0 \\ \:  \:  \:  \:  \:  \:  \:  \: 6 - y  - 1 = 0 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  5 - y = 0 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y = 5 \\ hence \: required \: fraction \: is \:  \frac{3}{5}
Similar questions