Math, asked by ajeshmittu, 4 months ago

if we divide 3y^4-y^3+12y^2+2 by 3y^2-1 then remainder is​

Answers

Answered by prakashpanda71
10

3y^4-y^3+12y^2+2 divided by 3y^2-1 will be -1/3y+19/3

Attachments:
Answered by hukam0685
5

Remainder is  \bf \red{\frac{ - y}{3}  +  \frac{19}{3} }\\ ,when 3 {y}^{4}  -  {y}^{3}  + 12 {y}^{2}  + 2 is divided by 3 {y}^{2}  - 1

Given:

  • A polynomial 3 {y}^{4}  -  {y}^{3}  + 12 {y}^{2}  + 2
  • Another polynomial 3 {y}^{2}  - 1 \\

To find:

  • Find the remainder after division.

Solution:

Step 1:

Apply long division method.

Let

p(x) = 3 {y}^{4}  -  {y}^{3}  + 12 {y}^{2}  + 2\\

and

g(x) = 3 {y}^{2}  - 1 \\

Step 2:

Multiply a coefficient or expression with g(x) so that it's first term will be equal to first term of p(x).

 \:  \:3 {y}^{2}  - 1 \: ) \: 3 {y}^{4}  -  {y}^{3}  + 12 {y}^{2}  + 2 \: ) {y}^{2}  -  \frac{y}{3}  +  \frac{13}{3}  \\ 3 {y}^{4}   \:  \:  \:  \:  \:  \:  \:  \:  \: -  {y}^{2}  \\ ( - ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( + ) \\  -  -  -  -  -  -  -  \\  -  {y}^{3}  + 13 {y}^{2}  + 2 \\  -  {y}^{3}  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: +  \frac{y}{3}  \\ ( + ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( - ) \\  -  -  -  -  -  -  -  - \\ 13 {y}^{2}  -  \frac{y}{3}  + 2 \\ 13 {y}^{2} \:  \:  \:  \:  \:  \:  \:   -  \frac{13}{3}  \\ ( - ) \:  \:  \:  \:  \:  \:  \: ( + ) \\  -  -  -  -  -  -  -  \\  -  \frac{y}{3}  +  \frac{19}{3}  \\  -  -  -  -  -  -  -  \\

Thus,

Quotient of division is \bf {y}^{2}  -  \frac{y}{3}  +  \frac{13}{3}  \\

Remainder is \bf -  \frac{y}{3}  +  \frac{19}{3} \\

Thus,

By this way remainder can be calculated and it is (19-y)/3.

_______________________________

Learn more:

1) divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following 1) p(x)=a...

https://brainly.in/question/40399222

2) divide by long division method and check your answer 9x^4 +15x^3 -2x^2 +7x -8 by 3x-2

https://brainly.in/question/31213257

Similar questions