If we multiply a fraction by itself and divide the product by its reciprocal,then the fraction thus obtained is 1 integer 217/512.What is the original fraction?
Answers
Answered by
1
Answer:
Answer:
\frac{x}{y}=\frac{8}{3}
y
x
=
3
8
Step-by-step explanation:
Let the numerator be x
Let the denominator be y
Fraction : \frac{x}{y}
y
x
Product of fraction with itself = \frac{x}{y} \times \frac{x}{y} =\frac{x^2}{y^2}
y
x
×
y
x
=
y
2
x
2
Reciprocal of fraction : \frac{y}{x}
x
y
Now divide the product by its reciprocal
So, \frac{\frac{x^2}{y^2}}{\frac{y}{x}}
x
y
y
2
x
2
\frac{x^2}{y^2}\times \frac{x}{y}
y
2
x
2
×
y
x
\frac{x^3}{y^3}
y
3
x
3
Now we are given that we get the fraction 512/27.
So, \frac{x^3}{y^3}=\frac{512}{27}
y
3
x
3
=
27
512
\frac{x}{y}=\sqrt[3]{\frac{512}{27}}
y
x
=
3
27
512
\frac{x}{y}=\frac{8}{3}
y
x
=
3
8
Hence the original fraction is \frac{x}{y}=\frac{8}{3}
y
x
=
3
8
Similar questions