Math, asked by baijapun2n3yjje, 1 year ago

If x=0.125,find the value of (1/x)power1/3

Answers

Answered by ARoy
273
(1/x)∧(1/3)
=(1/0.125)∧(1/3)
=[(1×1000)/125]∧(1/3)
=(8)∧(1/3)
=(2³)∧(1/3)
=(2)∧1
=2
Answered by amazetappo
14

If x=0.125, then the value of (\frac{1}{x}) ^{\frac{1}{3} } is 2.

Step-by-step Explanation

Given that x=0.125

To be found:

To find the value of (\frac{1}{x}) ^{\frac{1}{3} }

Solution:

We have x=0.125

The p/q form of x is \frac{125}{1000}

Now, substituting the value of x in (\frac{1}{x}) ^{\frac{1}{3} }, we get

(\frac{1}{x}) ^{\frac{1}{3} }=(\frac{1}{0.125}) ^{\frac{1}{3} }    -----(1)

Using the p/q form of x, we get (1) as,

(\frac{1}{x}) ^{\frac{1}{3} }=(\frac{1}{125/1000}) ^{\frac{1}{3} }\\\implies (\frac{1}{x}) ^{\frac{1}{3} }=(\frac{1000}{125}) ^{\frac{1}{3} }

Solving, we get

(\frac{1}{x}) ^{\frac{1}{3} }=(8) ^{\frac{1}{3} }\\\implies (\frac{1}{x}) ^{\frac{1}{3} }=(2^{3} )^{\frac{1}{3} }\\\implies (\frac{1}{x}) ^{\frac{1}{3} }=2

Therefore, when x=0.125, (\frac{1}{x}) ^{\frac{1}{3} } is equal to 2.

#SPJ3

Similar questions