Math, asked by manaswi45, 1 year ago

if x=0.7 bar and y= 0.23bar the rational number brtween x+y amd x-y is​

Answers

Answered by itsrvyadav48
4

Answer:

x+y=0.7+0.23

x-y=0.7-.23

Answered by pinquancaro
8

The rational number between x+y and x-y are \frac{99}{99},\frac{98}{99},\frac{97}{99},....,\frac{52}{99},\frac{53}{99}

Step-by-step explanation:

Given : If x=0.7 bar and y= 0.23bar

To find : The rational number between x+y and x-y is​ ?

Solution :

Let x=0.777 ....(1)

Multiply both side by 10,

10x=7.777... .....(2)

Subtract (1) and (2),

10x-x=(7.777...)-(0.777...)

9x=7

x=\frac{7}{9}

Similarly,

Let y=0.232323... ....(1)

Multiply both side by 100,

100y=23.2323... .....(2)

Subtract (1) and (2),

100y-y=(23.2323...)-(0.2323...)

99y=23

y=\frac{23}{99}

Now, 2.3\bar6\pm0.\bar{23}=x\pmy

i.e. x+y=\frac{7}{9}+\frac{23}{99}

x+y=\frac{7\times 99+23\times 9}{9\times 99}

x+y=\frac{693+207}{9\times 99}

x+y=\frac{900}{9\times 99}

x+y=\frac{100}{99}

Similarly, x-y=\frac{7}{9}-\frac{23}{99}

x-y=\frac{7\times 99-23\times 9}{9\times 99}

x-y=\frac{693-207}{9\times 99}

x-y=\frac{486}{9\times 99}

x-y=\frac{6}{11}

The rational number between \frac{100}{99}  and \frac{6}{11}

Multiply and divide \frac{6}{11}  by 9,

\frac{6\times 9}{11\times 9}=\frac{54}{99}

So, the rational number between \frac{100}{99} and \frac{54}{99} are \frac{99}{99},\frac{98}{99},\frac{97}{99},....,\frac{52}{99},\frac{53}{99}

#Learn more  

Express 3.42 (bar on 42) in p/q form.

https://brainly.in/question/5727549

Similar questions